Security and Safety
Volume 3, 2024
Security and Safety in Physical Layer Systems
Article Number 2023031
Number of page(s) 20
Section Information Network
Published online 24 January 2024
  1. Zeng Y, Zhang R and Lim TJ. Wireless communications with unmanned aerial vehicles: opportunities and challenges. IEEE Commun Mag 2016; 54: 36–42 [CrossRef] [Google Scholar]
  2. Gupta L, Jain R and Vaszkun G. Survey of important issues in UAV communication networks. IEEE Commun Surveys Tuts 2016; 18: 1123–1152 [CrossRef] [Google Scholar]
  3. Li B, Fei Z and Zhang Y. UAV Communications for 5G and beyond: Recent advances and future trends. IEEE Internet Things J 2019; 6: 2241–2263 [CrossRef] [Google Scholar]
  4. Lin X, Yajnanarayana V and Muruganathan SD, et al. The Sky is not the limit: LTE for unmanned aerial vehicles. IEEE Commun Mag 2018; 56 204–210 [CrossRef] [Google Scholar]
  5. Zeng Y and Zhang R. Energy-efficient UAV communication with trajectory optimization. IEEE Trans Wirel Commun 2017; 16: 3747–3760 [CrossRef] [Google Scholar]
  6. Sheng Z, Tuan HD and Nasir AA, et al. Secure UAV-enabled communication using Han-Kobayashi signaling. IEEE Trans Wirel Commun 2020; 19: 2905–2919 [CrossRef] [Google Scholar]
  7. Wang W, Li X and Wang R, et al. Robust 3D-trajectory and time switching optimization for dual-UAV-enabled secure communications. IEEE J Sel Areas Commun 2021; 39: 3334–3347 [CrossRef] [Google Scholar]
  8. Sun Y, Xu D and Ng DWK, et al. Optimal 3D-trajectory design and resource allocation for solar-powered UAV communication systems. IEEE Trans Commun 2019; 67: 4281–4298 [CrossRef] [Google Scholar]
  9. Feng W, Zhao N and Ao S, et al. Joint 3D trajectory and power optimization for UAV-Aided mmWave MIMO-NOMA Networks. IEEE Trans Commun 2021; 69: 2346–2358 [CrossRef] [Google Scholar]
  10. You C and Zhang R. 3D Trajectory optimization in rician fading for UAV-enabled data harvesting. IEEE Trans Wirel Commun 2019; 18: 3192–3207 [CrossRef] [Google Scholar]
  11. Duo B, Wu Q and Yuan X et al. Anti-Jamming 3D trajectory design for UAV-enabled wireless sensor networks under probabilistic LoS Channel. IEEE Trans Veh Technol 2020; 69: 16288–16293 [CrossRef] [Google Scholar]
  12. Zhan C, Zeng Y and Zhang R. Energy-efficient data collection in UAV enabled wireless sensor network. IEEE Wirel Commun LE 2018; 7: 328–331 [CrossRef] [Google Scholar]
  13. Ye HT, Kang X and Joung J, et al. Optimization for full-duplex rotary-wing UAV-enabled wireless-powered IoT Networks. IEEE Trans Wirel Commun 2020; 19: 5057–5072 [CrossRef] [Google Scholar]
  14. Zhao N, Lu W and Sheng M et al. UAV-assisted emergency networks in disasters. IEEE Wirel Commun 2019; 26: 45–51 [CrossRef] [Google Scholar]
  15. Huang Z, Sheng Z and Nasir AA et al. UAV-Assisted Downlink-and-Uplink Communication in the Presence of Multiple Malicious Jammers. In: IEEE Wireless Communications and Networking Conference (WCNC), Glasgow, UK, 2023: 1–6 [Google Scholar]
  16. Tang F, Zhou Y and Kato N. Deep reinforcement learning for dynamic uplink/downlink resource allocation in high mobility 5G HetNet. IEEE J Sel Area Comm 2020; 38: 2773–2782 [CrossRef] [Google Scholar]
  17. Zeng Y, Zhang R and Lim TJ. Throughput maximization for uav-enabled mobile relaying systems. IEEE Trans Commun 2016; 64: 4983–4996 [CrossRef] [Google Scholar]
  18. Hua M, Yang L and Wu Q et al. 3D UAV trajectory and communication design for simultaneous uplink and downlink transmission. IEEE Trans Commun 2020; 68: 5908–5923 [CrossRef] [Google Scholar]
  19. Sheng Z, Tuan HD and Duong TQ et al. UAV-aided two-way multi-user relaying. IEEE Trans Commun 2021; 69: 246–260 [CrossRef] [Google Scholar]
  20. Zeng H, Zhu X and Jiang Y et al. Toward UL-DL rate balancing: Joint resource allocation and hybrid-mode multiple access for UAV-BS-assisted communication systems. IEEE Trans Commun 2022; 70: 2757–2771 [CrossRef] [Google Scholar]
  21. Ali MA and Jamalipour A. UAV placement and power allocation in uplink and downlink operations of cellular network. IEEE Trans Commun 2020; 68: 4383–4393 [CrossRef] [Google Scholar]
  22. Gazestani AH, Ghorashi SA and Yang Z et al. Resource allocation in full-duplex UAV enabled multismall cell networks. IEEE Trans Mob Comput 2022; 21: 1049–1060 [CrossRef] [Google Scholar]
  23. Shi W, Sun Y and Liu M, et al. Joint UL/DL resource allocation for UAV-Aided full-duplex NOMA communications. IEEE Trans Commun 2021; 69: 8474–8487 [CrossRef] [Google Scholar]
  24. Hua M, Yang L and Pan C, et al. Throughput maximization for full-duplex UAV aided small cell wireless systems. IEEE Wirel Commun Lett 2020; 9: 475–479 [CrossRef] [Google Scholar]
  25. Sabharwal A, Schniter P and Guo D, et al. In-band full-duplex wireless: Challenges and opportunities. IEEE J Sel Areas Commun 2014; 32: 1637–1652 [CrossRef] [Google Scholar]
  26. Zhang T, Xu Y and Loo J, et al. Joint computation and communication design for UAV-assisted mobile edge computing in IoT. IEEE T Ind Inform 2020; 16: 5505–5516 [CrossRef] [Google Scholar]
  27. Hu X, Wong KK and Yang K, et al. UAV-assisted relaying and edge computing: Scheduling and trajectory optimization. IEEE Trans Wireless Commun 2019; 18: 4738–4752 [CrossRef] [Google Scholar]
  28. Wu Q, Mei W and Zhang R. Safeguarding wireless network with UAVs: A physical layer security perspective. IEEE Wirel Commun 2019; 26: 12–18 [CrossRef] [Google Scholar]
  29. Li S, Duo B and Renzo MD, et al. Robust secure UAV communications with the aid of reconfigurable intelligent surfaces. IEEE Trans Wirel Commun 2021; 20: 6402–6417 [CrossRef] [Google Scholar]
  30. Sheng Z, Fu H and Nasir AA, et al. Joint uplink and downlink scheduling and UAV trajectory design in the presence of multiple unfriendly jammers and eavesdroppers. Phys Commun 2022; 53: 101657 [CrossRef] [Google Scholar]
  31. Nasir AA, Tuan HD and Duong TQ. Fractional time exploitation for serving IoT users with guaranteed QoS by 5G spectrum. IEEE Commun Mag 2018; 56: 128–133 [CrossRef] [Google Scholar]
  32. Eom S, Lee H and Park J, et al. UAV-aided two-way mobile relaying systems. IEEE Commun Lett 2020; 24: 438–442 [CrossRef] [Google Scholar]
  33. Pedersen KI, Berardinelli G and Frederiksen F, et al. A flexible 5G frame structure design for frequency-division duplex cases. IEEE Commun Mag 2016; 54: 53–59 [CrossRef] [Google Scholar]
  34. Michael G and Stephen B. CVX: Matlab Software for Disciplined Convex Programming, version 2.1. 2014, [Google Scholar]
  35. Sheng Z, Tuan HD and Duong TQ, et al. Low-latency multiuser two-way wireless relaying for spectral and energy efficiencies. IEEE T Signal Proces 2018; 66: 4362–4376 [CrossRef] [Google Scholar]
  36. You C and Zhang R. Hybrid offline-online design for UAV-enabled data harvesting in probabilistic LoS channels. IEEE Trans Wirel Commun 2020; 19: 3753–3768 [CrossRef] [Google Scholar]
  37. Wu Q, Zeng Y and Zhang R. Joint trajectory and communication design for multi-uav enabled wireless networks. IEEE Trans Wirel Commun 2018; 17: 2109–2121 [CrossRef] [Google Scholar]
  38. Yu H, Tuan HD and Duong TQ, et al. Optimization for Signal Transmission and Reception in a Macrocell of Heterogeneous Uplinks and Downlinks. IEEE Trans Commun 2020; 68: 7054–7067 [CrossRef] [Google Scholar]
  39. Wu Y, Yang W and Guan X et al. Energy-efficient trajectory design for UAV-enabled communication under malicious jamming. IEEE Wirel Commun Lett 2021; 10: 206–210 [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.