Issue
Security and Safety
Volume 3, 2024
Security and Safety in Physical Layer Systems
Article Number 2023031
Number of page(s) 20
Section Information Network
DOI https://doi.org/10.1051/sands/2023031
Published online 24 January 2024

© The Author(s) 2024. Published by EDP Sciences and China Science Publishing & Media Ltd.

Licence Creative CommonsThis is an Open Access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

1. Introduction

In the B5G/6G wireless communication network, unmanned aerial vehicles (UAVs) are prominent owing to their advanced agility and potential capability in disasters, transportation, or complex environments[13]. Unlike terrestrial communication facilities, UAVs can improve the quality of service, due to the high controllability and dominance of line-of-sight (LoS) links at moderate heights [46]. Thus, UAVs not only act as aerial base stations to send information to ground users [79] but also are utilized to collect data from terrestrial nodes [1012].

Recently, many studies have been devoted to the optimization of UAV-based uplink (UL) and downlink (DL) communication [1315]. Based on half-duplex communication, resource allocation has been optimized to improve the network throughput [16]. For simultaneous transmission and reception (STR), frequency band-division-duplex (FDD) with fixed bandwidth allocation was considered [17]. To perform STR in the whole bandwidth, two UAVs’ cooperative communication network was considered in [18], where one UAV was dispatched to send information and the other UAV was used to receive information from ground users. By applying the full-duplex (FD) technology, the optimization of resource allocation between DL and UL communication is important [1924]. In [19], one UAV was deployed to simultaneously serve multiple downlink users (DLUs) and uplink users (ULUs), where four different STR schemes were investigated to maximize the throughput of the system. A novel joint uplink-downlink resource allocation algorithm that optimizes the power allocation for uplink and downlink to achieve balanced average rates for both UL and DL communications was proposed [20]. A cellular network in [21] was investigated comprising a UAV-mounted aerial base station and multiple terrestrial base stations, each serving multiple users. The balance between DL throughput and UL throughput in the UAV-based communication networks was investigated [22]. The UL and DL resource allocation were jointly optimized to improve spectrum efficiency [23]. Similarly, [24] improved the overall capacity by considering scheduling, UAV trajectory, and ULU power allocation. Full-duplex communication faces challenges due to self-interference, where the transmit signal can interfere significantly with the received signal. This strong interference hinders the performance of FD systems [25]. It is a remarkable fact that the quality of service in FD-based communication depends on self-interference, which cannot be neglected in the network. Instead of utilizing the FD communication, FDD and time-fraction (TF) are investigated to implement the simultaneous transmission and reception within a time slot in this paper. Besides, resource allocation such as bandwidth allocation and time slot scheduling are considered in the optimization [26, 27].

In addition, the security of UAV-based communications is more susceptible to interference from malicious terrestrial nodes due to the physical properties of the air-ground broadcast channel [28]. In [29], the secrecy rate of DL and UL communication was optimized considering the security of UAV-based communication in the existence of eavesdroppers. Additionally, considering both unfriendly jammers and eavesdroppers in [30], the UAV trajectory and power allocation were optimized to improve the secrecy rate of DL and UL communications. However, [29] and [30] considered scenarios where users can only act as uplink or downlink nodes during a one-time slot (TS). The scenario of the UAV simultaneously serving ULUs and DLUs in the presence of malicious jammers has not been investigated.

Motivated by the aforementioned issues, a UAV-assisted STR communication system in the existence of multiple jammers is considered. We aim to maximize the worst communication throughput among DLUs and ULUs. The main contributions of this investigation can be captured as follows:

  • To perform the STR, we first investigate the FDD-based scheme for UAV-assisted downlink-and-uplink communication. The available bandwidth is divided for DL and UL communication within a single time slot. The presence of multiple jammers adds complexity to the system, as they send malicious interference signals to both the UAV and users. To address these challenges, we propose a joint optimization approach. Specifically, we optimize the UAV’s three-dimensional trajectory, downlink scheduling, uplink scheduling, bandwidth allocation, and UAV’s transmission power. Our objective is to maximize the worst throughput among DLUs and ULUs, considering the impact of interference from the jammers.

  • Furthermore, instead of the bandwidth allocation for DL and UL communication, a time fraction (TF) based transmission scheme to maximize the worst throughput by utilizing the fraction of a time slot for the DL communication and the remaining fraction for the UL communication [31]. In the TF-based scheme, we optimize the time fraction to balance DL and UL communication. To address each non-convex optimization problem, we develop the mathematically soluble optimization algorithm for each scheme based on the block coordinate decomposition (BCD) method and successive convex approximation (SCA) technique.

  • Finally, we analyze the convergence of the proposed approaches and examine the system performance by adopting different schemes through numerical simulations.

The organization of the paper is as follows. The channel model and FDD-based UAV-assisted system model are presented in Section 2, whereas TF-based UAV-assisted STR is constructed in Section 3 to optimize downlink scheduling, uplink scheduling, 3D trajectory, UAV transmission power, and time fraction. Simulation results are presented in Section 4 to evaluate the performance of the proposed algorithms, and finally, the paper is concluded in Section 5.

2. Frequency band-division-duplex based scheme

We establish a UAV-based joint DL and UL communication network with KD terrestrial downlink users and KU uplink users in the presence of KM jammers as shown in Figure 1.

thumbnail Figure 1.

FDD-based UAV-assisted communication

The frequency band-division-duplex is proposed for simultaneous transmission and reception, where the downlink channel is orthogonal to the uplink channel [32]. The planned flight time T is evenly separated into N time slots δ and FDD-based UAV can communicate with a DLU and a ULU during one TS. Therefore, the constraints for DLU’s scheduling and ULU’s scheduling can be given by

j = 1 K D x j , n DL 1 , n , j K D , $$ \begin{aligned} \sum _{j=1}^{K_D}x^\mathrm{DL}_{j,n}\le 1, {\forall }n, j \in K_D, \end{aligned} $$(1)

i = 1 K U x i , n UL 1 , n , i K U , $$ \begin{aligned} \sum _{i=1}^{K_U}x^\mathrm{UL}_{i,n}\le 1, {\forall }n, i \in K_U, \end{aligned} $$(2)

x j , n DL { 0 , 1 } , n , j K D , $$ \begin{aligned} x^\mathrm{DL}_{j,n} \in \{ 0,1 \},{\forall }n, j \in K_D, \end{aligned} $$(3)

x i , n UL { 0 , 1 } , n , i K U , $$ \begin{aligned} x^\mathrm{UL}_{i,n} \in \{ 0,1 \},{\forall }n, i \in K_U, \end{aligned} $$(4)

where x j , n DL $ x^{\mathrm{DL}}_{j,n} $ and x i , n UL $ x^{\mathrm{UL}}_{i,n} $ represent user scheduling of j-th DLU j ∈ {1, …, KD} and i-th ULU i ∈ {1, …, KU}, respectively.

Different from the fixed bandwidth segmentation in [17], we define τn as the portion of the normalized bandwidth, which is allocated to the downlink communication during n-th TS. Meanwhile, ζ denotes the portion for guarding, while (η − τn) with η = 1 − ζ is denoted by us as the rest of the bandwidth for uplink communication. Define τ  = {τn, ∀n}, X D = { x j , n DL , n , j } $ \boldsymbol{\mathcal{X}_D}=\{x_{j,n}^{\mathrm{DL}}, \forall n, j\} $, X U = { x i , n UL , n , i } $ \boldsymbol{\mathcal{X}_U}=\{x_{i,n}^{\mathrm{UL}}, \forall n, i\} $, 𝒫 = {pnb, ∀n} and 𝒬 = {[QnHn],∀n}. 𝒫 is the transmit power of UAV. 𝒬 is the 3D UAV-assisted coordinate, where Qn and Hn are denoted as the horizontal coordinate and the flight height, respectively. Let [QiniHini] denote the initial point, while [QendHend] denotes the end location. The UAV’s mobility is limited by

Q n Q n 1 V max xy δ , n , $$ \begin{aligned} \Vert \boldsymbol{Q}_{n}-\boldsymbol{Q}_{n-1}\Vert \le V_{\rm max}^{xy}\delta ,\forall n, \end{aligned} $$(5)

Q ini = Q 0 , Q end = Q N , $$ \begin{aligned} \boldsymbol{Q}_{\rm ini} = \boldsymbol{Q}_{0}, \boldsymbol{Q}_{\rm end} = \boldsymbol{Q}_{N}, \end{aligned} $$(6)

| H n H n 1 | V max z δ , n , $$ \begin{aligned} |H_{n}-H_{n-1}| \le V_{\rm max}^{z}\delta ,\forall n, \end{aligned} $$(7)

H ini = H 0 , H end = H N , $$ \begin{aligned} H_{\rm ini} = H_{0},H_{\rm end} = H_{N}, \end{aligned} $$(8)

where V max xy $ V_{\mathrm{max}}^{xy} $ is the maximum horizontal velocity and V max z $ V_{\mathrm{max}}^{z} $ is the maximum vertical velocity. The UAV-to-ground (U2G) channel, and the ground-to-UAV (G2U) channel are assumed to be dominated by LoS [4]. Due to the characteristics of wireless channels, the channel from the UAV to the j-th DLU, the channel from the i-th ULU to the UAV and the channel from the m-th jammer to the UAV during the n-th TS can be regarded as Rician fading [18]:

g ̂ n , j DL ( Q ) = ρ n g n , j DL ( Q ) , n , j K D , $$ \begin{aligned} \hat{g}_{n,j}^{\mathrm{DL}}(\boldsymbol{\mathcal{Q} })=\rho _n\sqrt{g_{n,j}^{\mathrm{DL}}(\boldsymbol{\mathcal{Q} })}, \forall n, j \in K_D, \end{aligned} $$(9)

g ̂ i , n UL ( Q ) = ρ n g i , n UL ( Q ) , n , i K U , $$ \begin{aligned} \hat{g}_{i,n}^{\mathrm{UL}}(\boldsymbol{\mathcal{Q} })=\rho _n\sqrt{g_{i,n}^{\mathrm{UL}}(\boldsymbol{\mathcal{Q} })}, \forall n, i \in K_U, \end{aligned} $$(10)

g ̂ m , n UL ( Q ) = ρ n g m , n UL ( Q ) , n , m K M , $$ \begin{aligned} \hat{g}_{m,n}^{\mathrm{UL}}(\boldsymbol{\mathcal{Q} })=\rho _n\sqrt{g_{m,n}^{\mathrm{UL}}(\boldsymbol{\mathcal{Q} })}, \forall n, m \in K_M, \end{aligned} $$(11)

where the large-scale attenuation can be expressed as

g n , j DL ( Q ) = β 0 Q n w j 2 + H n 2 , $$ \begin{aligned} g_{n,j}^{\mathrm{DL}}(\boldsymbol{\mathcal{Q} })=\frac{\beta _0}{{\Vert \boldsymbol{Q}_{n}-\boldsymbol{w}_{j}\Vert }^2+{H_{n}}^2}, \end{aligned} $$

g i , n UL ( Q ) = β 0 Q n w i 2 + H n 2 , $$ \begin{aligned} g_{i,n}^{\mathrm{UL}}(\boldsymbol{\mathcal{Q} })=\frac{\beta _0}{{\Vert \boldsymbol{Q}_{n}-\boldsymbol{w}_{i}\Vert }^2+{H_{n}}^2}, \end{aligned} $$

g m , n UL ( Q ) = β 0 Q n w m 2 + H n 2 . $$ \begin{aligned} g_{m,n}^{\mathrm{UL}}(\boldsymbol{\mathcal{Q} })=\frac{\beta _0}{{\Vert \boldsymbol{Q}_{n}-\boldsymbol{w}_{m}\Vert }^2+{H_{n}}^2}. \end{aligned} $$

Let Kr be the Rician factor, while ρ ̂ n $ \hat{\rho}_n $ denotes the deterministic LoS component with | ρ ̂ n | = 1 $ |\hat{\rho}_n|=1 $, ρ ¯ n C N ( 0 , 1 ) $ \bar{\rho}_n \sim \mathcal{C} \mathcal{N}(0,1) $ is the small-fading fraction and β0 indicates the channel gain at the reference distance. The small-scale fading can be expressed as ρ n = K r K r + 1 ρ ̂ n + 1 K r + 1 ρ ¯ n $ \rho_n=\sqrt{\frac{K_r}{K_r+1}}\hat{\rho}_n+\sqrt{\frac{1}{K_r+1}}\bar{\rho}_n $ [18].

For the ground-to-ground (G2G) channels between m-th jammer and j-th DLU within one TS, the channels are largely subject to Rayleigh fading, which can be defined as h m , j DL = β 0 d m , j α ϱ $ h_{m,j}^{\mathrm{DL}}=\beta_0d_{m,j}^{-\alpha}\varrho $ [24]. Additionally, 𝜚 is a random value that follows an exponential distribution with a unit mean.

The FDD-based network downlink throughput within the n-th TS can be formulated as [33]

R ˙ j , n FDD ( Q , P ) = τ n log 2 ( 1 + p n b | g ̂ n , j DL | 2 m = 1 K M P m β 0 d m , j α + τ n σ 2 ) , n , j K D , $$ \begin{aligned} \begin{aligned} \dot{R}_{j,n}^{\mathrm{FDD}}(\boldsymbol{\mathcal{Q} },\boldsymbol{\mathcal{P} })=\tau _{n}\log _2(1+\frac{p^{b}_{n}{|\hat{g}_{n,j}^{\mathrm{DL}}|}^2}{\sum _{m=1}^{K_M}P_m\beta _0d_{m,j}^{-\alpha }+\tau _{n}\sigma ^2}), \forall n, j \in K_D, \end{aligned} \end{aligned} $$(12)

where p n b $ p^{b}_{n} $ is denoted as the transmission power of the UAV, while Pm is the interference power of m-th jammer. σ2 is the white Gaussian noise power. Also, the FDD-based network uplink throughput is given by

R ˙ i , n FDD ( Q ) = ( η τ n ) log 2 ( 1 + P i | g ̂ i , n UL | 2 m = 1 K M P m | g ̂ m , n UL | 2 + ( η τ n ) σ 2 ) , n , i K U , $$ \begin{aligned} \begin{aligned} \dot{R}_{i,n}^{\mathrm{FDD}}(\boldsymbol{\mathcal{Q} })=(\eta -\tau _{n})\log _2(1+\frac{P_i{|\hat{g}_{i,n}^{\mathrm{UL}}|}^2}{\sum _{m=1}^{K_M}P_m{|\hat{g}_{m,n}^{\mathrm{UL}}|}^2+(\eta -\tau _{n})\sigma ^2}), \forall n, i \in K_U, \end{aligned} \end{aligned} $$(13)

where Pi represents the ULU’s transmission power.

However, because of the randomness of the channel gain, the achievable throughput is random. We aim to investigate the average throughput of the network and the approximated throughput expression is given by [18], the FDD throughput of the downlink during n-th TS is formulated as

E [ R ˙ j , n FDD ( Q , P ) ] = τ n log 2 ( 1 + p n b g n , j DL m = 1 K M P m β 0 d m , j α + τ n σ 2 ) R j , n FDD ( Q , P , τ ) , $$ \begin{aligned} \begin{aligned}&\mathbb{E} [\dot{R}_{j,n}^{\mathrm{FDD}}(\boldsymbol{\mathcal{Q} },\boldsymbol{\mathcal{P} })]=\tau _n\log _2(1+\frac{p^b_ng_{n,j}^{\mathrm{DL}}}{\sum _{m=1}^{K_M}P_m\beta _0d_{m,j}^{-\alpha }+\tau _{n}\sigma ^2}) \triangleq R_{j,n}^{\mathrm{FDD}}(\boldsymbol{\mathcal{Q} },\boldsymbol{\mathcal{P} },\boldsymbol{\tau }), \end{aligned} \end{aligned} $$(14)

where σ2 denotes the white Gaussian noise power. Besides, the FDD throughput of the uplink during n-th TS is given by

E [ R ˙ i , n FDD ( Q , , τ ) ] = ( η τ n ) log 2 ( 1 + p i g i , n UL m = 1 K M P m g m , n UL + ( η τ n ) σ 2 ) R i , n FDD ( Q , τ ) . $$ \begin{aligned} \begin{aligned} \mathbb{E} [\dot{R}_{i,n}^{\mathrm{FDD}}(\boldsymbol{\mathcal{Q} },,\boldsymbol{\tau })]=(\eta -\tau _{n})\log _2(1+\frac{p_ig_{i,n}^{\mathrm{UL}}}{\sum _{m=1}^{K_M}P_mg_{m,n}^{\mathrm{UL}}+(\eta -\tau _{n})\sigma ^2}) \triangleq R_{i,n}^{\mathrm{FDD}}(\boldsymbol{\mathcal{Q} },\boldsymbol{\tau }). \end{aligned} \end{aligned} $$(15)

The binary constraints (3)–(4) make it inefficient to obtain a global feasible solution. According to the approach in the study [24], the binary constraints can be rewritten as

0 x j , n DL 1 , n , j K D , $$ \begin{aligned} 0 \le x^{\mathrm{DL}}_{j,n} \le 1,{\forall }n, j \in K_D, \end{aligned} $$(16)

0 x i , n UL 1 , n , i K U . $$ \begin{aligned} 0 \le x^{\mathrm{UL}}_{i,n} \le 1 ,{\forall }n, i \in K_U. \end{aligned} $$(17)

Considering the 3D trajectory design, the ULU/DLU scheduling, and the UAV transmission power, to find the balance between DL and UL communication, we aim to maximize the worst average throughput of the network. The optimization problem of FDD-based communication can be formulated as

max X D , X U , Q , P , τ min { min j R j FDD , D L ( X D , Q , P , τ ) , min i R i FDD , U L ( ( X U , Q , τ ) } $$ \begin{aligned}&\max \limits _{\boldsymbol{\mathcal{X} _D},\boldsymbol{\mathcal{X} _U},\boldsymbol{\mathcal{Q} },\boldsymbol{\mathcal{P} },\boldsymbol{\tau }}&\min \{\min \limits _{j}{R_{j}^{\mathrm{FDD},DL}(\boldsymbol{\mathcal{X} _D},\boldsymbol{\mathcal{Q} ,\boldsymbol{\mathcal{P} }},\boldsymbol{\tau })}, \min \limits _{i}{R_{i}^{\mathrm{FDD},UL}((\boldsymbol{\mathcal{X} _U},\boldsymbol{Q},\boldsymbol{\tau })}\} \end{aligned} $$(18a) s.t. 0 p n b P max , n , $$ \text{ s.t.} \enspace\enspace\enspace 0\le p^b_{n} \le P_{\max }, \forall n, $$(18b) 0 τ n 1 , n , $$ 0\le \tau _{n} \le 1, \forall n, $$(18c) ( 1 ) ( 2 ) , ( 5 ) ( 8 ) , ( 16 ) ( 17 ) , $$ ({1}){-}({2}), ({5}){-}({8}), ({16}){-}({17}), $$(18d)

where

R j FDD , D L ( X D , Q , P , τ ) = 1 N n = 1 N x j , n DL R j , n FDD ( Q , P , τ ) $$ \begin{aligned} R_{j}^{\mathrm{FDD},DL}(\boldsymbol{\mathcal{X} _D},\boldsymbol{\mathcal{Q} ,\boldsymbol{\mathcal{P} }},\boldsymbol{\tau })=\frac{1}{N}\sum _{n=1}^{N}x_{j,n}^{\mathrm{DL}}R_{j,n}^{\mathrm{FDD}}(\boldsymbol{\mathcal{Q} ,\boldsymbol{\mathcal{P} }},\boldsymbol{\tau }) \end{aligned} $$

and

R i FDD , U L ( X U , Q , τ ) = 1 N n = 1 N x i , n UL R i , n FDD ( Q , τ ) . $$ \begin{aligned} R_{i}^{\mathrm{FDD},UL}(\boldsymbol{\mathcal{X} _U},\boldsymbol{Q},\boldsymbol{\tau })=\frac{1}{N}\sum _{n=1}^{N}x_{i,n}^{\mathrm{UL}}R_{i,n}^{\mathrm{FDD}}(\boldsymbol{Q},\boldsymbol{\tau }). \end{aligned} $$

denote the average throughput of j-th downlink and i-th uplink communication, respectively. Pmax denotes the transmission power allocation budget.

Since the optimization problem (18) cannot be solved efficiently, we introduce the slack variable ϑ and the problem (18) is reformulated as follows

max X D , X U , Q , P , τ , ϑ ϑ $$ \max \limits _{\boldsymbol{\mathcal{X} _D},\boldsymbol{\mathcal{X} _U},\boldsymbol{\mathcal{Q} },\boldsymbol{\mathcal{P} },\boldsymbol{\tau },\vartheta }\qquad \qquad \vartheta $$(19a) s.t. 0 p n b P max , n , $$ \text{ s.t.}\enspace\enspace\enspace 0\le p^b_{n} \le P_{\max }, \forall n, $$(19b) 0 τ n 1 , n , $$ 0\le \tau _{n} \le 1, \forall n, $$(19c) ( 1 ) ( 2 ) , ( 5 ) ( 8 ) , ( 16 ) ( 17 ) , $$ ({1}){-}({2}), ({5}){-}({8}), ({16}){-}({17}), \quad $$(19d) R j FDD , DL ( X D , Q , P , τ ) ϑ , j K D , $$ R_{j}^{\mathrm{FDD,DL}}(\boldsymbol{\mathcal{X} _D},\boldsymbol{\mathcal{Q} ,\boldsymbol{\mathcal{P} }},\boldsymbol{\tau }) \ge \vartheta , j \in K_D,\qquad $$(19e) R i FDD , UL ( X U , Q , τ ) ϑ , i K U . $$ R_{i}^{\mathrm{FDD,UL}}(\boldsymbol{\mathcal{X} _U},\boldsymbol{Q},\boldsymbol{\tau }) \ge \vartheta , i \in K_U.\qquad $$(19f)

We decompose the optimization problem (19) into four subproblems and alternately optimize these subproblems by using the BCD technique.

2.1. Subproblem for the user scheduling

We fixed the feasible point the transmission power of the UAV 𝒫, the 3D trajectory 𝒬, and the allocation portion τ to obtain the optimal DLU’s scheduling 𝒳D and ULU’s scheduling 𝒳U. The optimization subproblem can be expressed as

max X D , X U , ϑ ϑ $$ \begin{aligned}&\max \limits _{\boldsymbol{\mathcal{X} _D},\boldsymbol{\mathcal{X} _U},\vartheta }&\qquad \qquad \vartheta \end{aligned} $$(20a) s.t. ( 16 ) ( 17 ) , ( 1 ) ( 2 ) , $$ \text{ s.t.} \enspace\enspace\enspace ({16}){-}({17}), ({1}){-}({2}), $$(20b) R j FDD , D L ( X D ) ϑ , j K D , $$ R_{j}^{\mathrm{FDD},DL}(\boldsymbol{\mathcal{X} _D}) \ge \vartheta , j \in K_D, $$(20c) R i FDD , U L ( X U ) ϑ . i K U . $$ R_{i}^{\mathrm{FDD},UL}(\boldsymbol{\mathcal{X} _U}) \ge \vartheta . i \in K_U. $$(20d)

Obviously, the subproblem for user scheduling is a standard linear problem, which can be solved efficiently by using an optimization package [24].

2.2. Subproblem for the portion of bandwidth

With the achievable DLU’s scheduling 𝒳D, ULU’s scheduling 𝒳U, the transmission power of the UAV 𝒫 and the 3D trajectory 𝒬, the objective function (19) can be reformulated as follows

max τ , ϑ ϑ $$ \max \limits _{\boldsymbol{\tau },\vartheta }\qquad \qquad \vartheta $$(21a) s.t. 0 τ n 1 , n , $$ \text{ s.t.}\enspace\enspace\enspace0\le \tau _{n} \le 1, \forall n, $$(21b) 1 N n = 1 N x j , n DL , r R j , n FDD ( τ ) ϑ , n , j K D , $$ \frac{1}{N}\sum _{n=1}^{N}x_{j,n}^{\mathrm{DL},r}R_{j,n}^{\mathrm{FDD}}(\boldsymbol{\tau }) \ge \vartheta , \forall n, j \in K_D,\quad $$(21c) 1 N n = 1 N x i , n UL , r R i , n FDD ( τ ) ϑ , n , i K U . $$ \frac{1}{N}\sum _{n=1}^{N}x_{i,n}^{\mathrm{UL},r}R_{i,n}^{\mathrm{FDD}}(\boldsymbol{\tau }) \ge \vartheta , \forall n, i \in K_U.\quad $$(21d)

To deal with constraint (21c) and constraint (21d) more efficiently, we apply the inequality (66) with [τnr, ∀n] for them respectively. Next, the lower bound R ~ j , n FDD ( τ ) $ \tilde{R}_{j,n}^{\mathrm{FDD}}(\boldsymbol{\tau}) $ and the lower bound R ~ i , n FDD ( τ ) $ \tilde{R}_{i,n}^{\mathrm{FDD}}(\boldsymbol{\tau}) $ yield as follows

R j , n FDD ( τ ) = τ n log 2 ( 1 + A j , n DL ( τ ) ) log 2 e ( 2 ln ( 1 + A j , n DL , r ) τ n r + A j , n DL , r A j , n DL , r + 1 τ n r ( 1 A j , n DL , r A j , n DL ( τ ) ) ln ( 1 + A j , n DL , r ) τ n ( τ n r ) 2 ) R ~ j FDD ( τ ) , $$ \begin{aligned} \begin{aligned} R_{j,n}^{\mathrm{FDD}}(\boldsymbol{\tau })=&\tau _{n}\log _2(1+A_{j,n}^{\mathrm{DL}}(\boldsymbol{\tau }))\ge \\&\log _2e*(2\ln (1+A_{j,n}^{\mathrm{DL},r})\tau ^r_{n} \\&+\frac{A_{j,n}^{\mathrm{DL},r}}{A_{j,n}^{\mathrm{DL},r}+1}\tau ^r_{n}(1-\frac{A_{j,n}^{\mathrm{DL},r}}{A_{j,n}^{\mathrm{DL}}(\boldsymbol{\tau })})\\&-\frac{\ln (1+A_{j,n}^{\mathrm{DL},r})}{\tau _{n}}(\tau ^r_{n})^2) \triangleq \tilde{R}_{j}^{\mathrm{FDD}}(\boldsymbol{\tau }), \end{aligned} \end{aligned} $$(22)

R i , n FDD ( τ ) = ( η τ n ) log 2 ( 1 + B i , n UL ( τ ) ) log 2 e ( 2 ln ( 1 + B i , n UL , r ) ( η τ n r ) + B i , n UL , r B i , n UL , r + 1 ( η τ n r ) ( 1 B i , n UL , r B i , n UL ( τ ) ) ln ( 1 + B i , n UL , r ) η τ n ( η τ n r ) 2 ) R ~ i FDD ( τ ) , $$ \begin{aligned} \begin{aligned} R_{i,n}^{\mathrm{FDD}}(\boldsymbol{\tau })=&(\eta -\tau _{n})\log _2(1+B_{i,n}^{\mathrm{UL}}(\boldsymbol{\tau }))\ge \\&\log _2e*(2\ln (1+B_{i,n}^{\mathrm{UL},r})(\eta -\tau ^r_{n}) \\&+\frac{B_{i,n}^{\mathrm{UL},r}}{B_{i,n}^{\mathrm{UL},r}+1}(\eta -\tau ^r_{n})(1-\frac{B_{i,n}^{\mathrm{UL},r}}{B_{i,n}^{\mathrm{UL}}(\boldsymbol{\tau })})\\&-\frac{\ln (1+B_{i,n}^{\mathrm{UL},r})}{\eta -\tau _{n}}(\eta -\tau ^r_{n})^2) \triangleq \tilde{R}_{i}^{\mathrm{FDD}}(\boldsymbol{\tau }), \end{aligned} \end{aligned} $$(23)

where

A j , n DL ( τ ) = p n b , r g n , j DL , r m = 1 K M P m β 0 d m , j α + τ n σ 2 , A j , n DL , r = p n b , r g n , j DL , r m = 1 K M P m β 0 d m , j α + τ n r σ 2 , $$ \begin{aligned} \begin{aligned} A_{j,n}^{\mathrm{DL}}(\boldsymbol{\tau })=\frac{p_{n}^{b,r}g_{n,j}^{\mathrm{DL},r}}{\sum _{m=1}^{K_M}P_m\beta _0d_{m,j}^{-\alpha }+\tau _{n}\sigma ^2},\\ A_{j,n}^{\mathrm{DL},r}=\frac{p_{n}^{b,r}g_{n,j}^{\mathrm{DL},r}}{\sum _{m=1}^{K_M}P_m\beta _0d_{m,j}^{-\alpha }+\tau ^r_{n}\sigma ^2}, \end{aligned} \end{aligned} $$

and

B i , n UL ( τ ) = p i g i , n UL , r m = 1 K M P m g m , n UL , r + ( η τ n ) σ 2 , B i , n UL , r = p i g i , n UL , r m = 1 K M P m g m , n UL , r + ( η τ n r ) σ 2 . $$ \begin{aligned} \begin{aligned} B_{i,n}^{\mathrm{UL}}(\boldsymbol{\tau })=\frac{p_ig_{i,n}^{\mathrm{UL},r}}{\sum _{m=1}^{K_M}P_mg_{m,n}^{\mathrm{UL},r}+(\eta -\tau _{n})\sigma ^2},\\ B_{i,n}^{\mathrm{UL},r}=\frac{p_ig_{i,n}^{\mathrm{UL},r}}{\sum _{m=1}^{K_M}P_mg_{m,n}^{\mathrm{UL},r}+(\eta -\tau ^r_{n})\sigma ^2}. \end{aligned} \end{aligned} $$

Analogously, the optimal subproblem (21) can be reformulated as

max τ , ϑ ϑ $$ \max \limits _{\boldsymbol{\tau },\vartheta }\qquad \qquad \vartheta $$(24a) s.t. 0 τ n 1 , n , $$ \text{ s.t.}\enspace\enspace\enspace0\le \tau _{n} \le 1, \forall n, $$(24b) 1 N n = 1 N x j , n DL , r R ~ j , n FDD ( τ ) ϑ , n , j K D , $$ \frac{1}{N}\sum _{n=1}^{N}x_{j,n}^{\mathrm{DL},r}\tilde{R}_{j,n}^{\mathrm{FDD}}(\boldsymbol{\tau }) \ge \vartheta , \forall n, j \in K_D, \quad $$(24c) 1 N n = 1 N x i , n UL , r R ~ i , n FDD ( τ ) ϑ , n , i K U . $$ \frac{1}{N}\sum _{n=1}^{N}x_{i,n}^{\mathrm{UL},r}\tilde{R}_{i,n}^{\mathrm{FDD}}(\boldsymbol{\tau }) \ge \vartheta , \forall n, i \in K_U. \quad $$(24d)

The above subproblem (24) can be solved steadily and the local solution can be obtained efficiently.

2.3. Subproblem for the 3D trajectory design

In this part, we aim to optimize the 3D trajectory 𝒬, while DLU’s scheduling 𝒳D, ULU’s scheduling 𝒳U, the transmission power of the UAV 𝒫, and the portion of bandwidth τ are fixed. The objective function (19) can be rewritten as

max Q , ϑ ϑ $$ \max \limits _{\boldsymbol{\mathcal{Q} },\vartheta }\qquad \qquad \vartheta $$(25a) s.t. ( 5 ) ( 8 ) , $$ \text{ s.t.}\enspace\enspace\enspace{({5})-({8})}, $$(25b) 1 N n = 1 N x j , n DL , r R j , n FDD ( Q ) ϑ , n , j K D , $$ \frac{1}{N}\sum _{n=1}^{N}x_{j,n}^{\mathrm{DL},r}R_{j,n}^{\mathrm{FDD}}(\boldsymbol{\mathcal{Q} }) \ge \vartheta , \forall n, j \in K_D, \quad $$(25c) 1 N n = 1 N x i , n UL , r R i , n FDD ( Q ) ϑ . n , j K D . $$ \frac{1}{N}\sum _{n=1}^{N}x_{i,n}^{\mathrm{UL},r}R_{i,n}^{\mathrm{FDD}}(\boldsymbol{\mathcal{Q} }) \ge \vartheta . \forall n, j \in K_D. \quad $$(25d)

The constraint (25c) and the constraint (25d) are non-convex w.r.t the 3D trajectory 𝒬. Firstly, we define the lower bound for the term R j , n FDD $ R_{j,n}^{\mathrm{FDD}} $ in the constraint (25c) with [QnrHnr, ∀n] as follows

R j , n FDD ( Q ) R ¯ j , n FDD ( Q ) τ n r ( log 2 ( 1 + D j , n FDD | | Q n r w j | | 2 + H n r 2 ) Γ j , n FDD × ( | | Q n w j | | 2 | | Q n r w j | | 2 + H n 2 H n r 2 ) ) , $$ \begin{aligned} \begin{aligned} R_{j,n}^{\mathrm{FDD}}(\boldsymbol{\mathcal{Q} })&\ge \bar{R}_{j,n}^{\mathrm{FDD}}(\boldsymbol{\mathcal{Q} })\\&\triangleq \tau ^r_{n}(\log _2(1+\frac{D_{j,n}^{\mathrm{FDD}}}{||\boldsymbol{Q}^r_{n}-\boldsymbol{w}_j||^2+{H^{r}_{n}}^2})\\&\quad -\Gamma _{j,n}^{\mathrm{FDD}}\times (||\boldsymbol{Q}_{n}-\boldsymbol{w}_j||^2-||\boldsymbol{Q}^r_{n}-\boldsymbol{w}_j||^2\\&\qquad \qquad \qquad \qquad +H_{n}^2-{H^{r}_{n}}^2)), \end{aligned} \end{aligned} $$(26)

where

Γ j , n FDD = D j , n FDD log 2 e ( D j , n FDD + | | Q n r w j | | 2 + H n r 2 ) ( | | Q n r w j | | 2 + H n r 2 ) $$ \begin{aligned} \begin{aligned} \Gamma _{j,n}^{\mathrm{FDD}}=&\frac{D_{j,n}^{\mathrm{FDD}}\log _2e}{(D_{j,n}^{\mathrm{FDD}}+||\boldsymbol{Q}^r_{n}-\boldsymbol{w}_j||^2+{H^{r}_{n}}^2)(||\boldsymbol{Q}^r_{n}-\boldsymbol{w}_j||^2+{H^{r}_{n}}^2)} \end{aligned} \end{aligned} $$

and

D j , n FDD = p n b , r β 0 m = 1 M P m β 0 d m , j α + τ n r σ 2 . $$ \begin{aligned} D_{j,n}^{\mathrm{FDD}}=\frac{p^{b,r}_{n}\beta _0}{\sum _{m=1}^{M}P_{m}\beta _{0}d_{m,j}^{-\alpha }+\tau ^r_{n}\sigma ^2}. \end{aligned} $$

With reference to the term R i , n FDD ( Q ) $ R_{i,n}^{\mathrm{FDD}}(\boldsymbol{\mathcal{Q}}) $ in the constraint (25d), by introducing slack variables L = { L i , n FDD , n , i } $ \boldsymbol{L}=\{L_{i,n}^{\mathrm{FDD}}, \forall n, i\} $ and I = { I n FDD , n } $ \boldsymbol{I}=\{I^{\mathrm{FDD}}_{n}, \forall n\} $, R i , n FDD ( Q ) $ R_{i,n}^{\mathrm{FDD}}(\boldsymbol{\mathcal{Q}}) $ can be substituted as

R ¯ i , n FDD ( L , I ) = ( η τ n r ) ( log 2 ( 1 + 1 L i , n FDD I n FDD ) ) , n , i K U , $$ \begin{aligned} \begin{aligned} \bar{R}_{i,n}^{\mathrm{FDD}}(\boldsymbol{L},\boldsymbol{I})=(\eta -\tau ^r_{n})(\log _2(1+\frac{1}{L_{i,n}^{\mathrm{FDD}}I^{\mathrm{FDD}}_{n}})),\forall n, i \in K_U, \end{aligned} \end{aligned} $$(27)

with extra constraints

p i g i , n UL L i , n FDD 1 , n , i K U , $$ \begin{aligned} p_ig_{i,n}^{\mathrm{UL}} \ge {L_{i,n}^{\mathrm{FDD}}}^{-1} ,\forall n, i \in K_U, \end{aligned} $$(28)

and

m = 1 K M P m g m , n UL + ( η τ n r ) σ 2 I n FDD , n , m K M . $$ \begin{aligned} \sum _{m=1}^{K_M}P_{m}g_{m,n}^{\mathrm{UL}}+(\eta -\tau ^r_{n})\sigma ^2 \le I^{\mathrm{FDD}}_{n} ,\forall n, m \in K_M. \end{aligned} $$(29)

Next, we apply inequality (64) for (27), and the lower bound R ¯ i , n FDD , l b ( L , I ) $ \bar{R}_{i,n}^{\mathrm{FDD},lb}(\boldsymbol{L},\boldsymbol{I}) $ of (27) can be expressed as

R ¯ i , n FDD , l b ( L , I ) = ( η τ n r ) ( log 2 ( 1 L i , n FDD , r I n FDD , r ) + ϕ i , n FDD ( L i , n FDD L i , n FDD , r ) + ψ i , n FDD ( I n FDD I n FDD , r ) ) , $$ \begin{aligned} \begin{aligned} \bar{R}_{i,n}^{\mathrm{FDD},lb}(\boldsymbol{L},\boldsymbol{I}) =&(\eta -\tau ^r_{n})( \log _2(\frac{1}{L_{i,n}^{\mathrm{FDD},r}I^{\mathrm{FDD},r}_{n}})\\&+\phi _{i,n}^{\mathrm{FDD}}(L_{i,n}^{\mathrm{FDD}}-L_{i,n}^{\mathrm{FDD},r})\\&+\psi _{i,n}^{\mathrm{FDD}}(I^{\mathrm{FDD}}_{n}-I^{\mathrm{FDD},r}_{n})), \end{aligned} \end{aligned} $$(30)

where

ϕ i , n FDD = log 2 e ( L i , n FDD , r + ( L i , n FDD , r ) 2 I n FDD , r ) $$ \begin{aligned} \phi _{i,n}^{\mathrm{FDD}}=-\frac{\log _2e}{(L_{i,n}^{\mathrm{FDD},r}+(L_{i,n}^{\mathrm{FDD},r})^{2}I^{\mathrm{FDD},r}_{n})} \end{aligned} $$

and

ψ i , n FDD = log 2 e ( I n FDD , r + ( I n FDD , r ) 2 L i , n FDD , r ) . $$ \begin{aligned} \psi _{i,n}^{\mathrm{FDD}}=-\frac{\log _2e}{(I^{\mathrm{FDD},r}_{n}+(I^{\mathrm{FDD},r}_{n})^{2}L_{i,n}^{\mathrm{FDD},r})}. \end{aligned} $$

To handle the extra non-convex constraint (29), we introduce the slack variable D = { d m , n FDD , n , m } $ \boldsymbol{D}=\{d_{m,n}^{\mathrm{FDD}},\forall n,m\} $ to transform the constraint (29) into the new constraints as follows

m = 1 K M P m β 0 d m , n FDD 1 + ( η τ n r ) σ 2 I n FDD , n , m K M , $$ \begin{aligned} \sum _{m=1}^{K_M}P_{m}\beta _0{d_{m,n}^{\mathrm{FDD}}}^{-1}+(\eta -\tau ^r_{n})\sigma ^2 \le I^{\mathrm{FDD}}_{n}, \forall n, m \in K_M, \end{aligned} $$(31)

d m , n FDD | | Q n w m | | 2 + H n 2 , n , m K M , $$ \begin{aligned} d_{m,n}^{\mathrm{FDD}} \le ||\boldsymbol{Q}_{n}-\boldsymbol{w}_m||^2+H_{n}^2, \forall n, m \in K_M, \end{aligned} $$(32)

d m , n FDD 0 , n , m K M . $$ \begin{aligned} d_{m,n}^{\mathrm{FDD}} \ge 0, \forall n, m \in K_M. \end{aligned} $$(33)

The right-hand side (RHS) of the constraint (32) is non-concave, by using the first-order Taylor expansion, the lower bound is derived as

C m , n FDD , l ( Q ) = | | Q n r w m | | 2 + 2 ( Q n r w m ) T ( Q n Q n r ) + H n r 2 + 2 H n r ( H n H n r ) . $$ \begin{aligned} \begin{aligned} C_{m,n}^{\mathrm{FDD},l}(\boldsymbol{\mathcal{Q} })&=||\boldsymbol{Q}^r_{n}-\boldsymbol{w}_m||^2\\&+2(\boldsymbol{Q}^r_{n} -\boldsymbol{w}_m)^T(\boldsymbol{Q}_{n}-\boldsymbol{Q}_{n}^r)\\&+{H^r_{n}}^2+2H^r_{n}(H_{n}-H^r_{n}). \end{aligned} \end{aligned} $$(34)

The constraint (32) can be rewritten as

d m , n FDD C m , n FDD , l ( Q ) , n , m K M . $$ \begin{aligned} d_{m,n}^{\mathrm{FDD}} \le C_{m,n}^{\mathrm{FDD},l}(\boldsymbol{\mathcal{Q} }), \forall n, m \in K_M. \end{aligned} $$(35)

The optimization problem (25) can be revised as

max Q , D , L , I , ϑ ϑ $$ \max \limits _{\boldsymbol{\mathcal{Q} },\boldsymbol{D},\boldsymbol{L},\boldsymbol{I},\vartheta }\qquad \qquad \vartheta $$(36a) s.t. ( 5 ) ( 8 ) , $$ \text{ s.t.}\enspace\enspace\enspace({5}){-}({8}), $$(36b) 1 N n = 1 N x j , n DL , r R ¯ j , n FDD ( Q ) ϑ , n , j K D , $$ \frac{1}{N}\sum _{n=1}^{N}x_{j,n}^{\mathrm{DL},r}\bar{R}_{j,n}^{\mathrm{FDD}}(\boldsymbol{Q}) \ge \vartheta , \forall n, j \in K_D, $$(36c) 1 N n = 1 N x i , n UL , r R ¯ i , n FDD , l b ( L , I ) ϑ , n , i K U , $$ \frac{1}{N}\sum _{n=1}^{N}x_{i,n}^{\mathrm{UL},r}\bar{R}_{i,n}^{\mathrm{FDD},lb}(\boldsymbol{L},\boldsymbol{I}) \ge \vartheta , \forall n, i \in K_U, $$(36d) p i g i , n UL L i , n FDD 1 , n , i K U , $$ p_ig_{i,n}^{\mathrm{UL}} \ge {L_{i,n}^{\mathrm{FDD}}}^{-1} ,\forall n, i \in K_U, \qquad $$(36e) ( 31 ) , ( 33 ) , ( 35 ) . $$ ({31}), ({33}), ({35}). $$(36f)

2.4. Subproblem for UAV transmission power allocation

With the given DLU’s scheduling 𝒳D, ULU’s scheduling 𝒳U and the 3D trajectory of the UAV 𝒬, the optimization problem (19) can be reformulated as follows

max P , ϑ ϑ $$ \max \limits _{\boldsymbol{\mathcal{P} },\vartheta }\qquad \qquad \vartheta $$(37a) s.t. 0 p n b P max , n , $$ \text{ s.t.}\enspace\enspace\enspace0\le p^b_{n} \le P_{\max }, \forall n, $$(37b) 1 N n = 1 N x j , n DL , r R j , n FDD ( P ) ϑ , n , j K D , $$ \frac{1}{N}\sum _{n=1}^{N}x_{j,n}^{\mathrm{DL},r}R_{j,n}^{\mathrm{FDD}}(\boldsymbol{\mathcal{P} }) \ge \vartheta , \forall n, j \in K_D, \qquad $$(37c) 1 N n = 1 N x i , n UL , r R i , n FDD ϑ , n , i K U . $$ \frac{1}{N}\sum _{n=1}^{N}x_{i,n}^{\mathrm{UL},r}R_{i,n}^{\mathrm{FDD}} \ge \vartheta , \forall n, i \in K_U.\qquad $$(37d)

The left-hand side (LHS) of the constraint (37c) is concave w.r.t the UAV transmission power pnb. We can obtain the local solution by using CVX [34] expeditiously.

Algorithm 1 FDD Based Optimization Algorithm

1: Initialization: Set r = 0. Find initial feasible points {Qrn Hr[n]}, {xUL,ri,n}, {xDL,rj,n}, {pb,rn}, {τrn} for (19), set > 0.

2: repeat.

3: Directly Solve the subproblem (20) for χD and χU to update the optimal {xDL,r+1j,n} and {xUL,r+1i,n} with {Qrn Hrn}, {pb,rn}, {Trn}.

4: Solve the problem (24) to update the optimal {τr+1n} with {xUL,r+1i,n} {Qr[n] Hr[n]}, {xDL,r+1j,n}, {pb,rn}.

5: Solve the problem (36) to update the optimal {Qr+1n Hr+1n} with {xUL,r+1i,n}, {xDL,r+1j,n}, {pb,rn}, {τr+1n}.

6: Directly Solve the problem (37) to update the optimum point as {pb,r+1n} with {xUL,r+1i,n}, {xDL,r+1j,n}, {Qr+1n Hr+1n}, {τr+1n}.

7: Set r := r + 1

8: Until the fractional growth of the objective value of (19) is within the tolerance

3. Time-fraction-based scheme

However, the FDD-based scheme cannot satisfy the STR in the whole bandwidth within one TS. Considering the similar treatment in [31], we now consider the TF-based UAV-assisted system serving both the downlinks and the uplinks, as shown in Figure 2.

thumbnail Figure 2.

TF-based UAV-assisted communication

The time fraction 0 <  μn <  1 is used for the downlink communication, while the remaining time fraction of (1 − μn) is used for the uplink communication. Define μ = [μn, ∀n]. Different from the FDD-based UAV-assisted system, the TF-based UAV-assisted system can transmit the signal to the DLU and receive the signal from the ULU within a single TS by utilizing the complete bandwidth. We assume that 1/pnb is the UAV power allocation within one TS for sending information to DLUs. The constraint of 1/pnb is given by

μ n / p n b P max , n . $$ \begin{aligned} \begin{aligned} \mu _n/p^b_n \le P_{\rm max}, \forall n. \end{aligned} \end{aligned} $$(38)

By using the channel models (9)–(11), the throughput expressions of the DL and UL communication can be derived [19], respectively,

R j , n TF ( Q , P , μ ) = μ n log 2 ( 1 + g n , j DL / p n b m = 1 K M P m β 0 d m , j α + σ 2 ) $$ \begin{aligned} \begin{aligned} R_{j,n}^{\mathrm{TF}}(\boldsymbol{\mathcal{Q} },\boldsymbol{\mathcal{P} },\boldsymbol\mathcal{\mu })=\mu _n\log _2(1+\frac{{g}_{n,j}^{\mathrm{DL}}/p^{b}_{n}}{\sum _{m=1}^{K_M}P_m\beta _0d_{m,j}^{-\alpha }+\sigma ^2}) \end{aligned} \end{aligned} $$(39)

R i , n TF ( Q , μ ) = ( 1 μ n ) log 2 ( 1 + p i g i , n UL m = 1 K M P m g m , n UL + σ 2 ) $$ \begin{aligned} \begin{aligned} R_{i,n}^{\mathrm{TF}}(\boldsymbol{\mathcal{Q} },\boldsymbol\mathcal{\mu })=(1-\mu _n)\log _2(1+\frac{p_ig_{i,n}^{\mathrm{UL}}}{\sum _{m=1}^{K_M}P_mg_{m,n}^{\mathrm{UL}}+\sigma ^2}) \end{aligned} \end{aligned} $$(40)

Then, the optimization problem is given by

max X D , X U , Q , P , μ min { min j R j T F , D L ( X D , Q , P , μ ) , min i R i T F , U L ( X U , Q , μ ) } $$ \max \limits _{\boldsymbol{\mathcal{X} _D},\boldsymbol{\mathcal{X} _U},\boldsymbol{\mathcal{Q} },\boldsymbol{\mathcal{P} },\boldsymbol{\mu }}\min \{\min \limits _{j}{R_{j}^{TF,DL}(\boldsymbol{\mathcal{X} _D},\boldsymbol{\mathcal{Q} },\boldsymbol{\mathcal{P} },\boldsymbol{\mu })}, \qquad \\\qquad \min \limits _{i}{R_{i}^{TF,UL}(\boldsymbol{\boldsymbol{\mathcal{X} _U}},\boldsymbol{\mathcal{Q} },\boldsymbol{\mu })}\} \nonumber \qquad $$(41a) s.t. μ n / p n b P max , n , $$ \text{ s.t.}\enspace\enspace\enspace\mu _n/p^b_{n} \le P_{\max }, \forall n, $$(41b) 0 μ n 1 , n , $$ 0\le \mu _n \le 1, \forall n, $$(41c) ( 1 ) ( 2 ) , ( 5 ) ( 8 ) , ( 16 ) ( 17 ) $$ ({1}){-}({2}), ({5}){-}({8}), ({16}){-}({17}) $$(41d)

where

R j TF , DL ( X D , Q , P , μ ) = 1 N n = 1 N μ n x j , n DL R j , n TF ( Q , P ) , $$ \begin{aligned} R_{j}^\mathrm{TF,DL}(\boldsymbol{\mathcal{X} _D},\boldsymbol{\mathcal{Q} },\boldsymbol{\mathcal{P} },\boldsymbol\mathcal{\mu })=\frac{1}{N}\sum _{n=1}^{N}\mu _nx_{j,n}^{\mathrm{DL}}R_{j,n}^\mathrm{TF}(\boldsymbol{\mathcal{Q} },\boldsymbol{\mathcal{P} }), \end{aligned} $$

and

R i TF , UL ( X U , Q , μ ) = 1 N n = 1 N ( 1 μ n ) x i , n UL R i , n TF ( Q ) . $$ \begin{aligned} R_{i}^\mathrm{TF,UL}(\boldsymbol{\boldsymbol{\mathcal{X} _U}},\boldsymbol{\mathcal{Q} },\boldsymbol\mathcal{\mu })=\frac{1}{N}\sum _{n=1}^{N}(1-\mu _n)x_{i,n}^{\mathrm{UL}}R_{i,n}^\mathrm{TF}(\boldsymbol{\mathcal{Q} }). \end{aligned} $$

Similarly, by introducing the slack variable ϑ, the objective function (41) can be rewritten as follows

max X D , X U , Q , P , μ , ϑ ϑ $$ \max \limits _{\boldsymbol{\mathcal{X} _D},\boldsymbol{\boldsymbol{\mathcal{X} _U}},\boldsymbol{\mathcal{Q} },\boldsymbol{\mathcal{P} },\boldsymbol{\mu },\vartheta }\qquad \qquad \vartheta $$(42a) s.t. 0 μ n / p n b P max , n , $$ \text{ s.t.}\enspace\enspace\enspace0\le \mu _n/p^b_{n} \le P_{\max }, \forall n, $$(42b) 0 μ n 1 , n , $$ 0\le \mu _n \le 1, \forall n, $$(42c) ( 1 ) ( 2 ) , ( 5 ) ( 8 ) , ( 16 ) ( 17 ) , $$ ({1}){-}({2}), ({5}){-}({8}), ({16}){-}({17}), $$(42d) R j T F , D L ( X D , Q , P , μ ) ϑ , j K D , $$ R_{j}^{TF,DL}(\boldsymbol{\mathcal{X} _D},\boldsymbol{\mathcal{Q} },\boldsymbol{\mathcal{P} },\boldsymbol{\mu }) \ge \vartheta , j \in K_D, $$(42e) R i T F , U L ( X U , Q , μ ) ϑ , i K U . $$ R_{i}^{TF,UL}(\boldsymbol{\boldsymbol{\mathcal{X} _U}},\boldsymbol{\mathcal{Q} },\boldsymbol{\mu }) \ge \vartheta , i \in K_U. $$(42f)

Again, by using the BCD technique, we alternately optimize the user scheduling 𝒳D, 𝒳U, the time fraction μ, the 3D trajectory of the UAV 𝒬 and the UAV transmission power 𝒫 to obtain the optimal solution.

3.1. Subproblem for User Scheduling

Define the time fraction μ, 3D trajectory 𝒬 and the transmission power of the UAV 𝒫 be fixed, the objective function (42) can be revised as

max X D , X U , ϑ ϑ $$ \max \limits _{\boldsymbol{\mathcal{X} _D},\boldsymbol{\mathcal{X} _U},\vartheta }\qquad \qquad \vartheta $$(43a) s.t. ( 1 ) ( 2 ) , ( 16 ) , ( 17 ) , $$ \text{ s.t.}\enspace\enspace\enspace({1}){-}({2}), ({16}), ({17}), $$(43b) R j TF , DL ( X D ) ϑ , j K D , $$ R_{j}^{\mathrm{TF,DL}}(\boldsymbol{\mathcal{X} _D}) \ge \vartheta , j \in K_D, $$(43c) R i TF , UL ( X U ) ϑ , i K U . $$ R_{i}^{\mathrm{TF,UL}}(\boldsymbol{\mathcal{X} _U}) \ge \vartheta , i \in K_U. $$(43d)

The linear subproblem (19) for DLU’s scheduling 𝒳D and ULU’s scheduling 𝒳D can be solved efficiently by using CVX [34].

3.2. Subproblem for time fraction

With the provided user scheduling 𝒳D, 𝒳U, 𝒫 and the 3D trajectory of the UAV 𝒬, the optimization problem (42) can be rewritten as follows

max μ , ϑ ϑ $$ \max \limits _{\boldsymbol{\mu },\vartheta }\qquad \qquad \vartheta $$(44a) s.t. μ n / p n b , r P max , n , $$ \text{ s.t.}\enspace\enspace\mu _n/p^{b,r}_{n} \le P_{\max }, \forall n, $$(44b) 0 μ n 1 , n , $$ 0\le \mu _n \le 1, \forall n, $$(44c) R j T F , D L ( μ ) ϑ , j K D , $$ R_{j}^{TF,DL}(\boldsymbol{\mu }) \ge \vartheta , j \in K_D, $$(44d) R i T F , U L ( μ ) ϑ , i K U . $$ R_{i}^{TF,UL}(\boldsymbol{\mu }) \ge \vartheta , i \in K_U. $$(44e)

Obviously, the subproblem for the time fraction μ is a linear programming problem and can be solved directly.

3.3. Subproblem for 3D Trajectory Design

With feasible DLU’s scheduling 𝒳D, ULU’s scheduling 𝒳U, time fraction μ and the transmission power of the UAV 𝒫, the objective function (42) can be expressed as

max Q , ϑ ϑ $$ \max \limits _{\boldsymbol{\mathcal{Q} },\vartheta }\qquad \qquad \vartheta $$(45a) s.t. ( 5 ) ( 8 ) , $$ \text{ s.t.}\enspace\enspace({5}){-}({8}), $$(45b) R j TF , DL ( Q ) ϑ , n , j K D , $$ R_{j}^{\mathrm{TF,DL}}(\boldsymbol{\mathcal{Q} }) \ge \vartheta , \forall n, j \in K_D, \qquad $$(45c) R i TF , UL ( Q ) ϑ , n , i K U . $$ R_{i}^{\mathrm{TF,UL}}(\boldsymbol{\mathcal{Q} }) \ge \vartheta , \forall n, i \in K_U.\qquad $$(45d)

Since the constraints (45c) and (45d) are non-convex, this subproblem seems non-trivial and nonlinear. About the constraint (45c), by employing the first-order Taylor expansion, the lower bound R ¯ j , n TF , l b ( Q ) $ \bar{R}_{j,n}^{\mathrm{TF},lb}(\boldsymbol{\mathcal{Q}}) $ with feasible point [QnrHnr, ∀n] can be derived by

R j , n TF ( Q ) R ¯ j , n TF , l b ( Q ) log 2 ( 1 + D j , n TF Q n r w j 2 + H n r 2 ) Γ j , n TF × ( Q n w j 2 Q n r w j 2 + H n 2 H n r 2 ) , $$ \begin{aligned} \begin{aligned} R_{j,n}^{\mathrm{TF}}(\boldsymbol{\mathcal{Q} })&\ge \bar{R}_{j,n}^{\mathrm{TF},lb}(\boldsymbol{\mathcal{Q} })\\&\triangleq \log _2(1+\frac{D_{j,n}^{\mathrm{TF}}}{\Vert \boldsymbol{Q}^r_{n}-\boldsymbol{w}_j\Vert ^2+{H_{n}^{r}}^2})-\Gamma _{j,n}^{\mathrm{TF}}\\&\times (\Vert \boldsymbol{Q}_{n}-w_j\Vert ^2-\Vert \boldsymbol{Q}^r_{n}-w_j\Vert ^2+H_{n}^2-{H_{n}^{r}}^2), \end{aligned} \end{aligned} $$(46)

where

Γ j , n TF = D j , n TF log 2 e ( D j , n TF + Q n r w j 2 + H n r 2 ) ( Q n r w j 2 + H n r 2 ) $$ \begin{aligned} \begin{aligned} \Gamma _{j,n}^{\mathrm{TF}}=\frac{D_{j,n}^{\mathrm{TF}}\log _2e}{(D_{j,n}^{\mathrm{TF}}+\Vert \boldsymbol{Q}^r_{n}-w_j\Vert ^2+{H^{r}_{n}}^2)(\Vert \boldsymbol{Q}^r_{n}-\boldsymbol{w}_j\Vert ^2+{H^{r}_{n}}^2)} \end{aligned} \end{aligned} $$

and

D j , n TF = β 0 / p n b , r m = 1 K M P m β 0 d m , j α + σ 2 . $$ \begin{aligned} D_{j,n}^{\mathrm{TF}}=\frac{\beta _0/p_{n}^{b,r}}{\sum _{m=1}^{K_M}P_{m}\beta _{0}d_{m,j}^{-\alpha }+\sigma ^2}. \end{aligned} $$

To handle the non-convex constraint (45d), introducing slack variables L = { L i , n TF , n , i } $ \boldsymbol{L}=\{L_{i,n}^{\mathrm{TF}}, \forall n, i\} $ and I = {InTF, ∀n}, R i , n TF ( Q ) $ R_{i,n}^{\mathrm{TF}}(\boldsymbol{\mathcal{Q}}) $ of constraint (45d) can be rewritten as

R ¯ i , n TF ( L , I ) = log 2 ( 1 + 1 L i , n TF I n TF ) , n , i K U , $$ \begin{aligned} \begin{aligned} \bar{R}_{i,n}^{\mathrm{TF}}(\boldsymbol{L},\boldsymbol{I})=\log _2(1+\frac{1}{L_{i,n}^{\mathrm{TF}}I^{\mathrm{TF}}_{n}}), \forall n, i \in K_U, \end{aligned} \end{aligned} $$(47)

with extra constraints

p i g i , n UL L i , n TF 1 , n , i K U , $$ \begin{aligned} p_ig_{i,n}^{\mathrm{UL}} \ge {L_{i,n}^{\mathrm{TF}}}^{-1}, \forall n, i \in K_U, \end{aligned} $$(48)

and

m = 1 K M P m g m , n UL + σ 2 I n TF , n , m K M . $$ \begin{aligned} \sum _{m=1}^{K_M}P_{m}g_{m,n}^{\mathrm{UL}}+\sigma ^2 \le I^{\mathrm{TF}}_{n}, \forall n, m \in K_M. \end{aligned} $$(49)

To solve the problem (45), utilize the inequality (64) for (47) with [ L i , n TF , r I n TF , r , n , i K U ] $ [L_{i,n}^{\mathrm{TF},r}\quad I^{\mathrm{TF},r}_n, \forall n, i \in K_U] $ to get the lower bound of R ¯ i , n TF $ \bar{R}_{i,n}^{\mathrm{TF}} $ as follows

R ¯ i , n TF , l b ( L , I ) = log 2 ( 1 L i , n TF , r I n TF , r ) + ϕ i , n TF ( L i , n TF L i , n TF , r ) + ψ i , n TF ( I n TF I n TF , r ) , $$ \begin{aligned} \begin{aligned} \bar{R}_{i,n}^{\mathrm{TF},lb}(\boldsymbol{L},\boldsymbol{I}) = \log _2(\frac{1}{L_{i,n}^{\mathrm{TF},r}I^{\mathrm{TF},r}_{n}})\\ +\phi _{i,n}^{\mathrm{TF}}(L_{i,n}^{\mathrm{TF}}-L_{i,n}^{\mathrm{TF},r})\\ +\psi _{i,n}^{\mathrm{TF}}(I^{\mathrm{TF}}_{n}-I^{\mathrm{TF},r}_{n}), \end{aligned} \end{aligned} $$(50)

where

ϕ i , n TF = log 2 e ( L i , n TF , r + ( L i , n TF , r ) 2 I n TF , r ) $$ \begin{aligned} \phi _{i,n}^{\mathrm{TF}}=-\frac{\log _2e}{(L_{i,n}^{\mathrm{TF},r}+(L_{i,n}^{\mathrm{TF},r})^{2}I^{\mathrm{TF},r}_{n})} \end{aligned} $$

and

ψ i , n TF = log 2 e ( I n TF , r + ( I n T F , r ) 2 L i , n TF , r ) . $$ \begin{aligned} \psi _{i,n}^{\mathrm{TF}}=-\frac{\log _2e}{(I^{\mathrm{TF},r}_{n}+(I^{TF,r}_{n})^{2}L_{i,n}^{\mathrm{TF},r})}. \end{aligned} $$

Given that the additional constraint (49) is non-convex, the slack variable D = { d m , n TF , n , m } $ \boldsymbol{D}=\{d_{m,n}^{\mathrm{TF}}, \forall n, m\} $ is introduced to replace the constraint (49) and new constraints can be given by

m = 1 K M P m β 0 d m , n TF 1 + σ 2 I n TF , n , m K M , $$ \begin{aligned} \sum _{m=1}^{K_M}P_{m}\beta _0{d^{\mathrm{TF}}_{m,n}}^{-1}+\sigma ^2 \le I^{\mathrm{TF}}_{n}, \forall n, m \in K_M, \end{aligned} $$(51)

d m , n TF | | Q n w m | | 2 + H n 2 , n , m K M , $$ \begin{aligned} d_{m,n}^{\mathrm{TF}} \le ||\boldsymbol{Q}_{n}-\boldsymbol{w}_m||^2+H_{n}^2, \forall n, m \in K_M, \end{aligned} $$(52)

d m , n TF 0 , n , m K M . $$ \begin{aligned} d_{m,n}^{\mathrm{TF}} \ge 0, \forall n, m \in K_M. \end{aligned} $$(53)

The RHS of the constraint (52) is approximated by the first-order Taylor expansion

C m , n TF , l ( Q ) = | | Q n r w m | | 2 + 2 ( Q n r w m ) T ( Q n Q n r ) + H n r 2 + 2 H n r ( H n H n r ) . $$ \begin{aligned} \begin{aligned} C_{m,n}^{\mathrm{TF},l}(\boldsymbol{\mathcal{Q} })&=||\boldsymbol{Q}^r_{n}-\boldsymbol{w}_m||^2\\&+2(\boldsymbol{Q}^r_{n} -\boldsymbol{w}_m)^T(\boldsymbol{Q}_{n}-\boldsymbol{Q}^r_{n})\\&+{H^r_{n}}^2+2H^r_{n}(H_{n}-H^r_{n}). \end{aligned} \end{aligned} $$(54)

The constraint (52) is revised as

d m , n TF C m , u a v TF , l ( Q ) , n , m K M . $$ \begin{aligned} d_{m,n}^{\mathrm{TF}} \le C_{m,uav}^{\mathrm{TF},l}(\boldsymbol{\mathcal{Q} }), \forall n, m \in K_M. \end{aligned} $$(55)

Finally, the approximation problem (45) can be reformulated as follows

max Q , D , L , I , ϑ ϑ $$ \max \limits _{\boldsymbol{\mathcal{Q} },\boldsymbol{D},\boldsymbol{L},\boldsymbol{I},\vartheta }\qquad \qquad \vartheta $$(56a) s.t. ( 5 ) ( 8 ) , $$ \text{ s.t.}\enspace\enspace({5}){-}({8}), $$(56b) 1 N n = 1 N x j , n DL , r R ¯ j , n TF , l b ( Q ) ϑ , n , j K D , $$ \frac{1}{N}\sum _{n=1}^{N}x_{j,n}^{\mathrm{DL},r}\bar{R}_{j,n}^{\mathrm{TF},lb}(\boldsymbol{Q}) \ge \vartheta , \forall n, j \in K_D, $$(56c) 1 N n = 1 N x i , n UL , r R ¯ i , n TF , l b ( L , I ) ϑ , n , i K U , $$ \frac{1}{N}\sum _{n=1}^{N}x_{i,n}^{\mathrm{UL},r}\bar{R}_{i,n}^{\mathrm{TF},lb}(\boldsymbol{L},\boldsymbol{I}) \ge \vartheta , \forall n, i \in K_U, $$(56d) p i g i , n UL L i , n TF 1 , n , m K M , $$ p_ig_{i,n}^{\mathrm{UL}} \ge {L_{i,n}^{\mathrm{TF}}}^{-1} ,\forall n, m \in K_M, \qquad $$(56e) ( 51 ) , ( 53 ) , ( 55 ) . $$ ({51}), ({53}), ({55}). $$(56f)

3.4. Subproblem for UAV transmission power allocation

With the given 𝒳D, 𝒳U, 𝒬 and μ, the optimization problem (42) can be rewritten as

max P , ϑ ϑ $$ \max \limits _{\boldsymbol{\mathcal{P} }, \vartheta }\qquad \qquad \vartheta $$(57a) s.t. μ n r / p n b P max , n , $$ \text{ s.t.}\enspace\mu ^r_n/p^{b}_{n} \le P_{\max }, \forall n, $$(57b) 1 N n = 1 N μ n r x j , n DL , r R j , n TF ( P ) ϑ , n , j K D , $$ \frac{1}{N}\sum _{n=1}^{N}\mu ^r_nx_{j,n}^{\mathrm{DL},r}R_{j,n}^{\mathrm{TF}}(\boldsymbol{\mathcal{P} }) \ge \vartheta , \forall n, j \in K_D, $$(57c) 1 N n = 1 N ( 1 μ n r ) x i , n UL , r R i , n TF ϑ , n , i K U . $$ \frac{1}{N}\sum _{n=1}^{N}(1-\mu ^r_n)x_{i,n}^{\mathrm{UL},r}R_{i,n}^{\mathrm{TF}} \ge \vartheta , \forall n, i \in K_U. $$(57d)

The constraint (57c) is non-convex. We also apply the first-order Taylor expansion at the feasible point { p n b , r } $ \{p^{b,r}_{n}\} $ to be approximated as:

R j , n TF ( P ) log 2 ( 1 + Z j , n r p n b , r ) Z j , n r log 2 e p n b , r ( Z j , n r + p n b , r ) ( p n b p n b , r ) R ̂ j , n TF ( P ) , $$ \begin{aligned} \begin{aligned} \qquad \qquad \qquad \qquad R_{j,n}^{\mathrm{TF}}(\boldsymbol{\mathcal{P} }) \ge&\log _2(1+\frac{Z^r_{j,n}}{p^{b,r}_n})-\frac{Z^r_{j,n}\log _2e}{p^{b,r}_n(Z^r_{j,n}+p^{b,r}_n)}(p^b_{n}-p^{b,r}_{n}) \triangleq \hat{R}_{j,n}^{\mathrm{TF}}(\boldsymbol{\mathcal{P} }), \end{aligned} \end{aligned} $$(58)

where Z j , n r = g n , j DL m = 1 K M P m β 0 d m , j α + σ 2 $ Z^r_{j,n}=\frac{g^{\mathrm{DL}}_{n,j}}{\sum_{m=1}^{K_M}P_m\beta_0d_{m,j}^{-\alpha}+\sigma^2} $.

The subproblem (57) can be rewritten as:

max P , ϑ ϑ $$ \max \limits _{\boldsymbol{\mathcal{P} }, \vartheta }\qquad \qquad \vartheta $$(59a) s.t. μ n r / p n b P max , n , $$ \text{ s.t.}\enspace\mu ^r_n/p^{b}_{n} \le P_{\max }, \forall n, $$(59b) 1 N n = 1 N x j , n DL , r R ̂ j , n TF ( P ) ϑ , n , j K D , $$ \frac{1}{N}\sum _{n=1}^{N}x_{j,n}^{\mathrm{DL},r}\hat{R}_{j,n}^{\mathrm{TF}}(\boldsymbol{\mathcal{P} }) \ge \vartheta , \forall n, j \in K_D, $$(59c) 1 N n = 1 N x i , n UL , r R i , n TF ϑ , n , i K U . $$ \frac{1}{N}\sum _{n=1}^{N}x_{i,n}^{\mathrm{UL},r}R_{i,n}^{\mathrm{TF}} \ge \vartheta , \forall n, i \in K_U. $$(59d)

Then, the local optimal solution can be obtained by solving the approximate problem (59).

Algorithm 2TF-Based Optimization Algorithm

1: Initialization: Set r = 0. Find initial feasible points {Qrn Hrn} {xUL,ri,n}, {xDL,rj,n}, {μrn}, {pb,rn} for (42), set > 0.

2: repeat.

3: Directly solve the subproblem (43) to update the optimum point {xDL,r+1j,n} and {xUL,r+1i,n} with {Qrn Hrn}, {μrn}, {pb,rn}.

4: Directly solve the subproblem (44) to update the optimum point {μr+1n} with {Qrn Hrn}, {xDL,r+1j,n}, {xUL,r+1i,n} and {pb,rn}.

5: Solve the problem (56) to update the optimum point as {Qr+1n Hr+1n} with {xUL,r+1i,n}, {xDL,r+1j,n}, {pb,rn} and {μr+1n}.

6: Solve the problem (59) to update the optimum point as {pb,r+1n} with {xUL,r+1i,n}, {xDL,r+1j,n}, {μr+1n} and {Qr+1n Hr+1n}.

7: Set r := r + 1

8: Until the fractional growth of the objective value of (42) is within the tolerance

4. Numerical result

This section demonstrates our numerical outcomes to characterize the performance of our proposed algorithms. The locations of DLUs are set as D1 = (200, 700, 0), D2 = (800, 100, 0), D3 = (400, 700), D4 = (600, 100), while the coordinates of ULUs are set as U1 = (200, 800, 0), U2 = (800, 0, 0), U3 = (400, 800), U4 = (600, 0), respectively. Besides, the coordinates of jammers are set as: J1 = (300, 300, 0), J1 = (600, 800, 0). The maximal horizontal speed and vertical speed are V max xy = 40 $ V_{\mathrm{max}}^{xy}=40\, $m/s and V max z = 30 $ V_{\mathrm{max}}^{z}=30 $m/s, respectively. The location of the UAV initial point is fixed at (0, 500, 100) and the final coordinate of the UAV is set to be (1000, 500, 100). The altitude constraints of the UAV are Hmin = 100 m and Hmax = 300 m [36]. We assume that Pmax = Pm = Pi = 20dBm. In addition, the bandwidth of the communication is B = 1 MHz with σ2 = −110dBm and the channel gain at the reference is β0 = −60dB [5, 24, 37]. The G2G path loss coefficients α are determined as α = 3 and the Rician factor is Ka = 3dB [18]. The maximum tolerable value is ϵ = 10−3. Additionally, the time slot is δ = 0.5 and the allocation ζ = 0.1 [38]. In the simulation results, “TF” refers to the proposed algorithm for time-fraction-based UAV-assisted communication, while “FDD” refers to the proposed algorithm for frequency band-division-duplex UAV-assisted communication.

In Figure 3, we plot the UAV 2D trajectory and 3D trajectory for different schemes within “T = 30s” and “T = 90s", respectively. During a long flight time such as “T = 90s", compared with the FDD-based system, the UAV would like to adjust the flight altitude to reduce the interference from jammers in the TF-based system. It can be supposed that the UAV prefers moving closer to the ULUs during the flight. This is because the channels between the UAV and malicious jammers are also mainly dominated by LoS which enhances the negative interference in the uplink communication. And, the UAV has to guarantee the fairness between the DL and UL communication. In order to investigate the fairness among users, we investigate the average throughput of each user.

thumbnail Figure 3.

Optimized UAV trajectory of different algorithms: (a) Horizontal plane; (b) 3D plane

In Figure 4, the benchmark “FDD Fixed Band” refers to the traditional algorithm in [17] without optimal bandwidth allocation, in which bandwidth for DL and UL communication is divided into two fixed parts, while “TF Fixed Time Fraction” refers to the algorithm in [19] with equal time fraction. Obviously, the average throughput of each ULU is less than or equal to each DLU’s throughput. Therefore, the UAV flies closer to the ULUs to improve the throughput of the uplink. Besides, in Figure 4, it can be seen that each user is fair and enjoys the same throughput in the “TF” scheme.

thumbnail Figure 4.

Average throughput of users with T = 90s

Meanwhile, we can observe that the “FDD” scheme has better performance than the “FDD Fixed Band” scheme in Figure 4. As demonstrated in Figure 5, the “FDD” scheme is able to adjust its bandwidth allocation to improve the throughput of the system to guarantee fairness between the DL and UL communication. Especially, with the jammer transmission power increasing, the adjustment of the bandwidth allocation is more evident. Also, as can be seen in Figure 6, TF-based UAV communication can improve the throughput by changing the time fraction in different slots.

thumbnail Figure 5.

Bandwidth allocation versus time slots with T = 90s

thumbnail Figure 6.

Optimal Time Fraction versus time slots with T = 90s

Figure 7 shows the average throughput achieved by different schemes versus the flight time T. One can observe that the performance of the TF-based scheme outperforms other schemes. As expected, the “FDD Fixed Band” scheme is the worst performer. Besides, we compare the TF-based average throughput achieved by the polyblock outer approximation method (POA) in [18] and our proposed scheme. Considering the same trajectory, our proposed scheme demonstrates a performance that is closely aligned with that of the POA-based method.

thumbnail Figure 7.

Average throughput versus Flight time T(s)

Furthermore, to examine the performance of different schemes in the existence of malicious jammers, we simulate average throughput versus the transmission power of jammers in Figure 8. As can be seen, the average throughput of each proposed algorithm decreases when the jammer transmission power gradually rises. Nevertheless, the performance of the TF-based scheme is superior to other schemes.

thumbnail Figure 8.

Average throughput versus Jammer transmission power Pm(dBm) with T = 90s

Finally, Figure 9 characterizes the convergence of the proposed algorithms. The “FDD Fixed Band” algorithm and the “TF Fixed Fraction” algorithm achieve the same convergence throughput. The TF-based algorithm and FDD-based algorithm require 40 and 19 iterations, respectively.

thumbnail Figure 9.

Convergence of the proposed algorithms

5. Conclusions

In this paper, a joint downlink and uplink communication system in the presence of multiple malicious jammers has been considered, where a UAV is designed to transmit the signal to DLUs and receive the signal from ULUs simultaneously. The possible schemes for jointly optimizing the DL and UL communication to maximize the worst throughput among users are proposed, namely the FDD-based scheme and TF-based scheme. Our numerical results demonstrate the advantage of the TF-based scheme over other schemes.

6. Appendix: Rate function approximation

Let g1(x)=log2(1 + x) and g 2 ( x ) = log 2 ( 1 + 1 x ) $ g_2(x)=\log_2(1+\frac{1}{x}) $, x >  0. It can be verified that g1(x) is concave with respect to x and g2(x) is convex with respect to x. Based on Jensen’s inequality, the inequalities are given by [18]

log 2 ( 1 + 1 E { 1 x } ) E { log 2 ( 1 + x ) } log 2 ( 1 + E { x } ) . $$ \begin{aligned} \log _2(1+\frac{1}{\mathbb{E} \{\frac{1}{x}\}}) \le \mathbb{E} \{\log _2(1+x)\} \le \log _2(1+\mathbb{E} \{x\}). \end{aligned} $$(60)

Define x = X Y ( X > 0 , Y > 0 ) $ x=\frac{X}{Y}(X > 0,Y > 0) $, and X and Y are independent, we have

log 2 ( 1 + 1 E { Y X } ) E { log 2 ( 1 + X Y ) } log 2 ( 1 + E { X Y } ) . $$ \begin{aligned} \log _2(1+\frac{1}{\mathbb{E} \{\frac{Y}{X}\}}) \le \mathbb{E} \{\log _2(1+\frac{X}{Y})\} \le \log _2(1+\mathbb{E} \{\frac{X}{Y}\}). \end{aligned} $$(61)

E { X Y } E { X } E { Y } , $$ \begin{aligned} \mathbb{E} \{\frac{X}{Y}\} \ge \frac{\mathbb{E} \{X\}}{\mathbb{E} \{Y\}}, \end{aligned} $$(62)

where the (62) follows the convexity of function 1 Y $ \frac{1}{Y} $. Hence we can derive the following approximation result

log 2 ( 1 + 1 E { Y X } ) log 2 ( 1 + E { X } E { Y } ) log 2 ( 1 + E { X Y } ) . $$ \begin{aligned} \log _2(1+\frac{1}{\mathbb{E} \{\frac{Y}{X}\}}) \le \log _2(1+\frac{\mathbb{E} \{X\}}{\mathbb{E} \{Y\}}) \le \log _2(1+\mathbb{E} \{\frac{X}{Y}\}). \end{aligned} $$(63)

From (61) and (63), it can be seen that E { log 2 ( 1 + X Y ) } $ \mathbb{E}\{\log_2(1+\frac{X}{Y})\} $ and log 2 ( 1 + E { X } E { Y } ) $ \log_2(1+\frac{\mathbb{E}\{X\}}{\mathbb{E}\{Y\}}) $ have the same lower bound and upper bound. Therefore, E { log 2 ( 1 + X Y ) } log 2 ( 1 + E { X } E { Y } ) $ \mathbb{E}\{\log_2(1+\frac{X}{Y})\} \approx \log_2(1+\frac{\mathbb{E}\{X\}}{\mathbb{E}\{Y\}}) $ can be derived.

Lemma. With any given achievable point (Lr[n],Ir[n]), R ¯ $ \bar{R} $ should be lower bounded by [39]

R ¯ [ n ] = log 2 ( 1 + 1 I [ n ] L [ n ] ) log 2 ( 1 L r [ n ] I r [ n ] ) + ϕ ( L [ n ] L r [ n ] ) + ψ ( I [ n ] I r [ n ] ) R ¯ lb [ n ] $$ \begin{aligned} \begin{aligned} \bar{R}[n] =\log _2(1+\frac{1}{I[n]L[n]}) \ge&\log _2(\frac{1}{L^{r}[n]I^{r}[n]})\\&+\phi (L[n]-L^{r}[n])\\&+\psi (I_[n]-I^{r}[n])\triangleq \bar{R}^{lb}[n] \end{aligned} \end{aligned} $$(64)

where ϕ = log 2 e ( L r [ n ] + ( L r [ n ] ) 2 I r [ n ] ) $ \phi=-\frac{\log_2e}{(L^{r}[n]+(L^{r}[n])^{2}I^{r}[n])} $ and ψ = log 2 e ( I r [ n ] + ( I r [ n ] ) 2 L r [ n ] ) $ \psi=-\frac{\log_2e}{(I^{r}[n]+(I^{r}[n])^{2}L^{r}[n])} $

It is true that

ln ( 1 + x ) t 2 ln ( 1 + x ¯ ) t ¯ + x ¯ ( x ¯ + 1 ) t ¯ ( 1 x ¯ x ) ln ( 1 + x ¯ ) t ¯ 2 t , ( x , t ) R + 2 , ( x ¯ , t ¯ ) R + 2 $$ \begin{aligned} \begin{aligned} \frac{\ln (1+\boldsymbol{x})}{\boldsymbol{t}} \ge&2\frac{\ln (1+\bar{x})}{\bar{t}}+\frac{\bar{x}}{(\bar{x}+1)\bar{t}}(1-\frac{\bar{x}}{\boldsymbol{x}})-\frac{\ln (1+\bar{x})}{\bar{t}^2}\boldsymbol{t}, \forall (\boldsymbol{x},\boldsymbol{t}) \in \mathbb{R} ^2_+, (\bar{x},\bar{t}) \in \mathbb{R} ^2_+ \end{aligned} \end{aligned} $$(65)

which can be proved in [38],

Substituting t 1 t $ \boldsymbol{t} \rightarrow \frac{1}{\boldsymbol{t}} $ and t ¯ 1 t ¯ $ \bar{t} \rightarrow \frac{1}{\bar{t}} $ in (65) leads to

t ln ( 1 + x ) 2 t ¯ ln ( 1 + x ¯ ) + t ¯ x ¯ ( x ¯ + 1 ) ( 1 x ¯ x ) t ¯ 2 ln ( 1 + x ¯ ) t , ( x , t ) R + 2 , ( x ¯ , t ¯ ) R + 2 $$ \begin{aligned} \begin{aligned} \boldsymbol{t}\ln (1+\boldsymbol{x}) \ge&2\bar{t}\ln (1+\bar{x})+\frac{\bar{t}\bar{x}}{(\bar{x}+1)}(1-\frac{\bar{x}}{\boldsymbol{x}})-\frac{\bar{t}^2\ln (1+\bar{x})}{\boldsymbol{t}}, \forall (\boldsymbol{x},\boldsymbol{t}) \in \mathbb{R} ^2_+, (\bar{x},\bar{t}) \in \mathbb{R} ^2_+ \end{aligned} \end{aligned} $$(66)

for all x ≥ 0, y >  0, and x ¯ 0 $ \bar{x}\geq 0 $, y ¯ > 0 $ \bar{y} > 0 $.

Conflict of Interest

The authors declare no conflict of interest.

Data Availability

No data are associated with this article.

Authors’ Contributions

Zhiyu Huang and Zhichao Sheng designed the system model and wrote this paper. Hongwen Yu and Antonino Masaracchia discussed the recent developments. Shuzhen Liu checked and corrected the mistakes in the paper.

Acknowledgments

Thanks to anonymous reviewers for their helpful comments and suggestions.

Funding

This work was supported in part by the National Natural Science Foundation of China (NSFC) under Grant 61901254 and in part by the Aeronautical Science Foundation of China under Grant 2020Z0660S6001.

References

  1. Zeng Y, Zhang R and Lim TJ. Wireless communications with unmanned aerial vehicles: opportunities and challenges. IEEE Commun Mag 2016; 54: 36–42 [CrossRef] [Google Scholar]
  2. Gupta L, Jain R and Vaszkun G. Survey of important issues in UAV communication networks. IEEE Commun Surveys Tuts 2016; 18: 1123–1152 [CrossRef] [Google Scholar]
  3. Li B, Fei Z and Zhang Y. UAV Communications for 5G and beyond: Recent advances and future trends. IEEE Internet Things J 2019; 6: 2241–2263 [CrossRef] [Google Scholar]
  4. Lin X, Yajnanarayana V and Muruganathan SD, et al. The Sky is not the limit: LTE for unmanned aerial vehicles. IEEE Commun Mag 2018; 56 204–210 [CrossRef] [Google Scholar]
  5. Zeng Y and Zhang R. Energy-efficient UAV communication with trajectory optimization. IEEE Trans Wirel Commun 2017; 16: 3747–3760 [CrossRef] [Google Scholar]
  6. Sheng Z, Tuan HD and Nasir AA, et al. Secure UAV-enabled communication using Han-Kobayashi signaling. IEEE Trans Wirel Commun 2020; 19: 2905–2919 [CrossRef] [Google Scholar]
  7. Wang W, Li X and Wang R, et al. Robust 3D-trajectory and time switching optimization for dual-UAV-enabled secure communications. IEEE J Sel Areas Commun 2021; 39: 3334–3347 [CrossRef] [Google Scholar]
  8. Sun Y, Xu D and Ng DWK, et al. Optimal 3D-trajectory design and resource allocation for solar-powered UAV communication systems. IEEE Trans Commun 2019; 67: 4281–4298 [CrossRef] [Google Scholar]
  9. Feng W, Zhao N and Ao S, et al. Joint 3D trajectory and power optimization for UAV-Aided mmWave MIMO-NOMA Networks. IEEE Trans Commun 2021; 69: 2346–2358 [CrossRef] [Google Scholar]
  10. You C and Zhang R. 3D Trajectory optimization in rician fading for UAV-enabled data harvesting. IEEE Trans Wirel Commun 2019; 18: 3192–3207 [CrossRef] [Google Scholar]
  11. Duo B, Wu Q and Yuan X et al. Anti-Jamming 3D trajectory design for UAV-enabled wireless sensor networks under probabilistic LoS Channel. IEEE Trans Veh Technol 2020; 69: 16288–16293 [CrossRef] [Google Scholar]
  12. Zhan C, Zeng Y and Zhang R. Energy-efficient data collection in UAV enabled wireless sensor network. IEEE Wirel Commun LE 2018; 7: 328–331 [CrossRef] [Google Scholar]
  13. Ye HT, Kang X and Joung J, et al. Optimization for full-duplex rotary-wing UAV-enabled wireless-powered IoT Networks. IEEE Trans Wirel Commun 2020; 19: 5057–5072 [CrossRef] [Google Scholar]
  14. Zhao N, Lu W and Sheng M et al. UAV-assisted emergency networks in disasters. IEEE Wirel Commun 2019; 26: 45–51 [CrossRef] [Google Scholar]
  15. Huang Z, Sheng Z and Nasir AA et al. UAV-Assisted Downlink-and-Uplink Communication in the Presence of Multiple Malicious Jammers. In: IEEE Wireless Communications and Networking Conference (WCNC), Glasgow, UK, 2023: 1–6 [Google Scholar]
  16. Tang F, Zhou Y and Kato N. Deep reinforcement learning for dynamic uplink/downlink resource allocation in high mobility 5G HetNet. IEEE J Sel Area Comm 2020; 38: 2773–2782 [CrossRef] [Google Scholar]
  17. Zeng Y, Zhang R and Lim TJ. Throughput maximization for uav-enabled mobile relaying systems. IEEE Trans Commun 2016; 64: 4983–4996 [CrossRef] [Google Scholar]
  18. Hua M, Yang L and Wu Q et al. 3D UAV trajectory and communication design for simultaneous uplink and downlink transmission. IEEE Trans Commun 2020; 68: 5908–5923 [CrossRef] [Google Scholar]
  19. Sheng Z, Tuan HD and Duong TQ et al. UAV-aided two-way multi-user relaying. IEEE Trans Commun 2021; 69: 246–260 [CrossRef] [Google Scholar]
  20. Zeng H, Zhu X and Jiang Y et al. Toward UL-DL rate balancing: Joint resource allocation and hybrid-mode multiple access for UAV-BS-assisted communication systems. IEEE Trans Commun 2022; 70: 2757–2771 [CrossRef] [Google Scholar]
  21. Ali MA and Jamalipour A. UAV placement and power allocation in uplink and downlink operations of cellular network. IEEE Trans Commun 2020; 68: 4383–4393 [CrossRef] [Google Scholar]
  22. Gazestani AH, Ghorashi SA and Yang Z et al. Resource allocation in full-duplex UAV enabled multismall cell networks. IEEE Trans Mob Comput 2022; 21: 1049–1060 [CrossRef] [Google Scholar]
  23. Shi W, Sun Y and Liu M, et al. Joint UL/DL resource allocation for UAV-Aided full-duplex NOMA communications. IEEE Trans Commun 2021; 69: 8474–8487 [CrossRef] [Google Scholar]
  24. Hua M, Yang L and Pan C, et al. Throughput maximization for full-duplex UAV aided small cell wireless systems. IEEE Wirel Commun Lett 2020; 9: 475–479 [CrossRef] [Google Scholar]
  25. Sabharwal A, Schniter P and Guo D, et al. In-band full-duplex wireless: Challenges and opportunities. IEEE J Sel Areas Commun 2014; 32: 1637–1652 [CrossRef] [Google Scholar]
  26. Zhang T, Xu Y and Loo J, et al. Joint computation and communication design for UAV-assisted mobile edge computing in IoT. IEEE T Ind Inform 2020; 16: 5505–5516 [CrossRef] [Google Scholar]
  27. Hu X, Wong KK and Yang K, et al. UAV-assisted relaying and edge computing: Scheduling and trajectory optimization. IEEE Trans Wireless Commun 2019; 18: 4738–4752 [CrossRef] [Google Scholar]
  28. Wu Q, Mei W and Zhang R. Safeguarding wireless network with UAVs: A physical layer security perspective. IEEE Wirel Commun 2019; 26: 12–18 [CrossRef] [Google Scholar]
  29. Li S, Duo B and Renzo MD, et al. Robust secure UAV communications with the aid of reconfigurable intelligent surfaces. IEEE Trans Wirel Commun 2021; 20: 6402–6417 [CrossRef] [Google Scholar]
  30. Sheng Z, Fu H and Nasir AA, et al. Joint uplink and downlink scheduling and UAV trajectory design in the presence of multiple unfriendly jammers and eavesdroppers. Phys Commun 2022; 53: 101657 [CrossRef] [Google Scholar]
  31. Nasir AA, Tuan HD and Duong TQ. Fractional time exploitation for serving IoT users with guaranteed QoS by 5G spectrum. IEEE Commun Mag 2018; 56: 128–133 [CrossRef] [Google Scholar]
  32. Eom S, Lee H and Park J, et al. UAV-aided two-way mobile relaying systems. IEEE Commun Lett 2020; 24: 438–442 [CrossRef] [Google Scholar]
  33. Pedersen KI, Berardinelli G and Frederiksen F, et al. A flexible 5G frame structure design for frequency-division duplex cases. IEEE Commun Mag 2016; 54: 53–59 [CrossRef] [Google Scholar]
  34. Michael G and Stephen B. CVX: Matlab Software for Disciplined Convex Programming, version 2.1. 2014, http://cvxr.com/cvx [Google Scholar]
  35. Sheng Z, Tuan HD and Duong TQ, et al. Low-latency multiuser two-way wireless relaying for spectral and energy efficiencies. IEEE T Signal Proces 2018; 66: 4362–4376 [CrossRef] [Google Scholar]
  36. You C and Zhang R. Hybrid offline-online design for UAV-enabled data harvesting in probabilistic LoS channels. IEEE Trans Wirel Commun 2020; 19: 3753–3768 [CrossRef] [Google Scholar]
  37. Wu Q, Zeng Y and Zhang R. Joint trajectory and communication design for multi-uav enabled wireless networks. IEEE Trans Wirel Commun 2018; 17: 2109–2121 [CrossRef] [Google Scholar]
  38. Yu H, Tuan HD and Duong TQ, et al. Optimization for Signal Transmission and Reception in a Macrocell of Heterogeneous Uplinks and Downlinks. IEEE Trans Commun 2020; 68: 7054–7067 [CrossRef] [Google Scholar]
  39. Wu Y, Yang W and Guan X et al. Energy-efficient trajectory design for UAV-enabled communication under malicious jamming. IEEE Wirel Commun Lett 2021; 10: 206–210 [CrossRef] [Google Scholar]
Zhiyu Huang

Zhiyu Huang received the B.S. degrees from Shanghai University, Shanghai, China, in 2021. He is currently pursuing the M.S. degree with the Shanghai University. His current research interests include optimization methods for UAV communication and full-duplex communication.

Shuzhen Liu

Shuzhen Liu received the B.S. degrees from Anhui Jianzhu University, Hefei, China, in 2019. She is currently pursuing the M.S. degree with the Shanghai University. Her current research interests include UAV communications, physical layer security and intelligent reflecting surface.

Zhichao Sheng

Zhichao Sheng received the Ph.D. degree in electrical engineering from the University of Technology Sydney, Sydney, NSW, Australia, in 2018. From 2018 to 2019, he was a Research Fellow with the School of Electronics, Electrical Engineering and Computer Science, Queen’s University Belfast, Belfast, U.K. He is currently a Lecturer with Shanghai University, Shanghai, China. His research interests include optimization methods for wireless communication and signal processing.

Hongwen Yu

Hongwen Yu received his B.Eng., M.Eng. and Ph.D. degree in communication and information engineering from Shanghai University, Shanghai, China, in 2011, 2014 and 2020, respectively, and his Ph.D. degree in electronic engineering from the University of Technology Sydney, NSW, Australia in 2022. Currently, he is an Associate Professor in the Department of Communication and Information Engineering, Shanghai University. His research interests include reconfigurable intelligent surface, Wave communications and B5G/6G wireless communications.

Antonino Masaracchia

Antonino Masaracchia received the Ph.D. degree in electronics and telecommunications engineering from the University of Palermo, Italy, in 2016. Since 2018, he has been a Research Fellow with the Centre for Wireless Innovation, Queen’s University Belfast, U.K. His research interests include heterogeneous networks, convex optimization and machine learning techniques, wireless communications, and green communication networking.

All Figures

thumbnail Figure 1.

FDD-based UAV-assisted communication

In the text
thumbnail Figure 2.

TF-based UAV-assisted communication

In the text
thumbnail Figure 3.

Optimized UAV trajectory of different algorithms: (a) Horizontal plane; (b) 3D plane

In the text
thumbnail Figure 4.

Average throughput of users with T = 90s

In the text
thumbnail Figure 5.

Bandwidth allocation versus time slots with T = 90s

In the text
thumbnail Figure 6.

Optimal Time Fraction versus time slots with T = 90s

In the text
thumbnail Figure 7.

Average throughput versus Flight time T(s)

In the text
thumbnail Figure 8.

Average throughput versus Jammer transmission power Pm(dBm) with T = 90s

In the text
thumbnail Figure 9.

Convergence of the proposed algorithms

In the text

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.