Security and Safety
Volume 3, 2024
Security and Safety in Physical Layer Systems
Article Number 2023026
Number of page(s) 21
Section Information Network
Published online 31 January 2024
  1. Li S, Da Xu L and Zhao S. 5G internet of things: A survey. J. Ind. Inf. Integration 2018; 10: 1–9 [Google Scholar]
  2. Wang M, Lin Y and Tian Q et al. Transfer learning promotes 6G wireless communications: Recent advances and future challenges. IEEE Trans. Reliab 2021; 70: 790–807. [CrossRef] [Google Scholar]
  3. Karwel P et al.. “Ericsson mobility report”, Technol Emerg Bus., Ericsson AB Stockholm Sweden Rep EAB-21 2022 [Google Scholar]
  4. Ahmad I, Kumar T and Liyanage M et al. Overview of 5G security challenges and solutions. IEEE Commun Mag 2018; 2: 36–43 [Google Scholar]
  5. Feng DG, Xu J and Lan X. Study on 5G mobile communication network security. J Softw (Malden) 2018; 29: 1813–1825 [Google Scholar]
  6. Wang W, Sun Z and Piao S et al. Wireless physical-layer identification: Modeling and validation. IEEE Trans Inf Forensics Secur 2016; 11: 2091–2106 [CrossRef] [Google Scholar]
  7. Lin Y, Tu Y and Dou Z, et al. Contour stella image and deep learning for signal recognition in the physical layer. IEEE Trans Cogn Commun Netw 2020; 7: 34–46 [Google Scholar]
  8. Yu J, Hu A and Zhou F et al. Radio frequency fingerprint identification based on denoising autoencoders. In: Wireless Mobile Computing Netw Commun Conf (WiMob). 2019, 1–6 [Google Scholar]
  9. Yang Y, Hu A and Xing Y et al. A data-independent radio frequency fingerprint extraction scheme. IEEE Commun Lett 2021; 10: 2524–2527. [CrossRef] [Google Scholar]
  10. Xing Y, Hu A and Zhang J et al. Design of a channel robust radio frequency fingerprint identification scheme. IEEE Internet Things J 2022; 10: 6946–6959 [Google Scholar]
  11. Zha H, Tian Q and Lin Y. Real-world ADS-B signal recognition based on Radio Frequency fingerprinting. In: IEEE Netw Prot Conf (ICNP) 2020, 1–6 [Google Scholar]
  12. Tu Y, Lin Y and Zha H et al. Large-scale real-world radio signal recognition with deep learning. Chin J Aeronaut 2022; 35: 35–48 [CrossRef] [Google Scholar]
  13. Shen G, Zhang J, Marshall A and Cavallaro JR. Towards scalable and channel-robust radio frequency fingerprint identification for LoRa. IEEE Trans Inf Forensics Secur 2022; 17: 774–787 [CrossRef] [Google Scholar]
  14. Shen G, Zhang J and Marshall A et al., Radio frequency fingerprint identification for LoRa using spectrogram and CNN. In: Proc IEEE Int Conf Comput Commun (INFOCOM). 2021, 1–10 [Google Scholar]
  15. Tu Y, Lin Y and Hou C et al. Complex-valued networks for automatic modulation classification. In: IEEE Trans Vehicular Techno Conf (VTC). 2020, 10085–10089 [Google Scholar]
  16. Dong Y, Jiang X and Zhou H et al. SR2CNN: Zero-shot learning for signal recognition. IEEE Trans Signal Process 2021; 69: 2316–2329 [CrossRef] [Google Scholar]
  17. Mitra R and Kaddoum G. Random fourier feature-based deep learning for wireless communications. IEEE Trans Cognitive Commun Netw 2022; 8: 468–479 [CrossRef] [Google Scholar]
  18. Kang J, Shin Y, Lee H, Park J and Lee H. Radio frequency fingerprinting for frequency hopping emitter identification. Appl Sci 2021; 11: 10812 [CrossRef] [Google Scholar]
  19. Liu M, Wang J and Zhao N et al. Radio frequency fingerprint collaborative intelligent identification using incremental learning. IEEE Trans Netw Sci Eng 2021; 9: 3222–3233 [Google Scholar]
  20. Zhang Z, Yuan L and Zhou F et al. Data-and-knowledge dual-driven radio frequency fingerprint identification. IEEE Internet Things J 2023; 1–1 [Google Scholar]
  21. Reus-Muns G, Jaisinghani D and Sankhe K et al. Trust in 5G open RANs through machine learning: RF fingerprinting on the POWDER PAWR platform. In: IEEE Global Commun Conf (GLOBECOM) Taipei Taiwan. 2020, 1–6 [Google Scholar]
  22. Yin P, Peng L, Zhang J et al. LTE device identification based on rf fingerprint with multi-channel convolutional neural network. In: IEEE Global Commun Conf (GLOBECOM). 2021, 1–6 [Google Scholar]
  23. Wu Z, Peng L and Zhang J et al. Authorized and rogue lte terminal identification using wavelet coefficient graph with auto-encoder. In: IEEE Vehicular Techno Conf (VTC2022-Fall). 2022, 1–5. [Google Scholar]
  24. Gebhard A, Lang O and Lunglmayr M et al. A robust nonlinear RLS type adaptive filter for second-order-intermodulation distortion cancellation in FDD LTE and 5G direct conversion transceivers. IEEE Trans Microw Theory Tech 2019; 67: 1946–1961 [CrossRef] [Google Scholar]
  25. Mohammadian A and Tellambura C. RF impairments in wireless transceivers: Phase noise CFO and IQ imbalance – A survey. IEEE Access 2021; 9: 111718–111791 [CrossRef] [Google Scholar]
  26. Anttila L, Handel P and Valkama M. Joint mitigation of power amplifier and I/Q modulator impairments in broadband direct-conversion transmitters. IEEE Trans Microw Theory Tech 2010; 58: 730–739 [CrossRef] [Google Scholar]
  27. Wang D, Aziz M and Helaoui M et al. Augmented real-valued time-delay neural network for compensation of distortions and impairments in wireless transmitters. IEEE Trans Neural Netw Learn Syst 2018; 30: 242–254 [Google Scholar]
  28. Zhang J, Woods R and Sandell M et al. Radio frequency fingerprint identification for narrowband systems modelling and classification. IEEE Trans Inf Forensics Secur 2021; 16: 3974–3987 [CrossRef] [Google Scholar]
  29. Chen T, Shen H, Hu A, He W, Xu J and Hu H. Radio Frequency Fingerprints Extraction for LTE-V2X: A Channel Estimation Based Methodology. In: IEEE Vehicular Techno Conf (VTC2022-Fall) London United Kingdom. 2022, 1–2. [Google Scholar]
  30. Schuchert A, Hasholzner R and Antoine P. A novel IQ imbalance compensation scheme for the reception of OFDM signals. IEEE Trans Consum Electron 2001; 47: 313–318 [CrossRef] [Google Scholar]
  31. Zhu Z, Leung H, Huang X, Challenges in reconfigurable radio transceivers and application of nonlinear signal processing for RF impairment mitigation. IEEE Circuits Syst Mag 2013; 13: 44–65. [CrossRef] [Google Scholar]
  32. 3GPP TS 38101–2 “NR; User Equipment (UE) radio transmission and reception; Part 2: Range 2 Standalone (Release 17)”, v175.0 Apr 2022. [Google Scholar]
  33. Hanna SS and Cabric D et al. Deep Learning Based Transmitter Identification using Power Amplifier Nonlinearity. In: Proc IEEE Int Conf Comput Netw Commu (ICNC). 2019: 674–680. [Google Scholar]
  34. Al-Shawabka A, Restuccia F and D’Oro S et al. Exposing the fingerprint: Dissecting the impact of the wireless channel on radio fingerprinting. In: Proc IEEE Int Conf Comput Commun (INFOCOM). 2020, 646–655 [Google Scholar]
  35. Cai Z, Ma W and Wang X et al. The performance analysis of time series data augmentation technology for small sample communication device recognition. IEEE Trans Reliab 2023: 574–585 [CrossRef] [Google Scholar]
  36. 3GPP TR 38901 “Study on channel model for frequencies from 05 to 100 GHz”. 3rd Generation Partnership Project; Technical Specification Group Radio Access Network. [Google Scholar]
  37. Han D, Kim J and Kim J. Deep pyramidal residual networks. In Proc IEEE Conf Comput Vis Pattern Recognit. 2017: 5927–5935. [Google Scholar]
  38. Allen-Zhu Z and Li Y. What can resnet learn efficiently going beyond kernels? In: Adv Neural Inf Process Syst 2019; 32: 9017–9028. [Google Scholar]
  39. Woo S, Park J and Lee JY et al., Cbam: Convolutional block attention module. In: Proc Eur Conf Comput Vis (ECCV). 2018, 3–19. [Google Scholar]
  40. Sainath TN, Vinyals O andd Senior A et al. Convolutional long short-term memory fully connected deep neural networks. In IEEE Int Conf Acoust Speech Signal Process (ICASSP). 2015: 4580–4584 [Google Scholar]
  41. Szegedy C, Ioffe S and Vanhoucke V et al. Inception-v4 inception-resnet and the impact of residual connections on learning. In AAAI Conf Artif Intell. 2017, 4278–4284 [Google Scholar]
  42. Jiang Q and Sha J. RF fingerprinting identification based on spiking neural network for LEO–MIMO Systems. IEEE Commun Lett 2023; 2: 287–291 [CrossRef] [Google Scholar]
  43. Ye H, Li GY and Juang BH. Power of deep learning for channel estimation and signal detection in OFDM systems. IEEE Commun Lett 2017; 7: 114–117 [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.