Issue
Security and Safety
Volume 2, 2023
Security and Safety in Unmanned Systems
Article Number 2023018
Number of page(s) 15
Section Information Network
DOI https://doi.org/10.1051/sands/2023018
Published online 23 August 2023
  1. McCamish SB, Romano M and Yun X. Autonomous distributed control of simultaneous multiple spacecraft proximity maneuvers. IEEE Trans Autom Sci Eng 2010; 7: 630–44. [CrossRef] [Google Scholar]
  2. Yoon H and Agrawal BN. Novel expressions of equations of relative motion and control in Keplerian orbits. J Guid Control Dyn 2009; 32: 664–9. [CrossRef] [Google Scholar]
  3. Capello E, Punta E and Dabbene F et al. Sliding-mode control strategies for rendezvous and docking maneuvers. J Guid Control Dyn 2017; 40: 1481–7. [CrossRef] [Google Scholar]
  4. Weiss A, Petersen C and Baldwin M et al. Safe positively invariant sets for spacecraft obstacle avoidance. J Guid Control Dyn 2015; 38: 720–32. [CrossRef] [Google Scholar]
  5. Di Cairano S, Park H and Kolmanovsky I. Model predictive control approach for guidance of spacecraft rendezvous and proximity maneuvering. Int J Robust Nonlinear Control 2012; 22: 1398–427. [CrossRef] [Google Scholar]
  6. McCamish SB, Romano M and Yun X. Autonomous distributed control of simultaneous multiple spacecraft proximity maneuvers. IEEE Trans Autom Sci Eng 2010; 7: 630–44. [CrossRef] [Google Scholar]
  7. Reynolds TP, Kelly CL and Morgan C et al. SOC-i: a CubeSat demonstration of optimization-based real-time constrained attitude control. In: 2021 IEEE Aerospace Conference (50100). IEEE, 2021, 1–18. [Google Scholar]
  8. Morphopoulos T, Hansen LJ and Pollack J, et al. Plug-and-play-an enabling capability for responsive space missions. In: Paper No. RS2-2004-5002, Presented at 2nd Responsive Space Conference. Los Angeles, CA, 2004. [Google Scholar]
  9. Lyke J, Cannon S and Fronterhouse D et al. A plug-and-play system for spacecraft components based on the USB standard. 2005. [Google Scholar]
  10. Lyke JC. Plug-and-play satellites. IEEE Spect 2012; 49: 36–42. [CrossRef] [Google Scholar]
  11. Bandyopadhyay S, Subramanian GP and Foust R et al. A review of impending small satellite formation flying missions. In: 53rd AIAA Aerospace Sciences Meeting. 2015, 1623. [Google Scholar]
  12. Wu B. Spacecraft attitude control with input quantization. J Guid Control Dyn 2016; 39: 176–81. [CrossRef] [Google Scholar]
  13. Wu B and Cao X. Robust attitude tracking control for spacecraft with quantized torques. IEEE Trans Aerosp Electron Syst 2017; 54: 1020–8. [Google Scholar]
  14. Sun H, Hou L and Zong G et al. Fixed-time attitude tracking control for spacecraft with input quantization. IEEE Trans Aerosp Electron Syst 2018; 55: 124–34. [Google Scholar]
  15. Liu Q, Liu M and Yu J. Adaptive fault-tolerant control for attitude tracking of flexible spacecraft with limited data transmission. IEEE Trans Syst Man Cybern Syst 2019; 51: 4400–8. [Google Scholar]
  16. Sun H and Hou L. Adaptive attitude control for spacecraft systems with sensor and actuator attacks. Int J Adapt Control Signal Process 2022; 36: 448–68. [CrossRef] [Google Scholar]
  17. Tran J, Farokhi F and Cantoni M et al. Implementing homomorphic encryption based secure feedback control. Control Eng Pract 2020; 97: 104350. [CrossRef] [Google Scholar]
  18. Cortes J, Dullerud GE and Han S et al. Differential privacy in control and network systems. In: 2016 IEEE 55th Conference on Decision and Control (CDC). IEEE, 2016, 4252–72. [CrossRef] [Google Scholar]
  19. Zhang C, Wu J and Huang Y et al. Constructive schemes to spacecraft attitude control with low communication frequency using sampled-data and encryption approaches. Aircr Eng Aerosp Technol 2021; 93: 267–74. [CrossRef] [Google Scholar]
  20. Kogiso K and Fujita T. Cyber-security enhancement of networked control systems using homomorphic encryption. In: 2015 54th IEEE Conference on Decision and Control (CDC). IEEE, 2015, 6836–43. [CrossRef] [Google Scholar]
  21. Teranishi K, Shimada N and Kogiso K. Stability-guaranteed dynamic ElGamal cryptosystem for encrypted control systems. IET Control Theory Appl 2020; 14: 2242–52. [CrossRef] [Google Scholar]
  22. Kawase H, Teranishi K and Kogiso K. Dynamic quantizer synthesis for encrypted state-feedback control systems with partially homomorphic encryption. In: 2022 American Control Conference (ACC), IEEE, 2022, 75–81. [CrossRef] [Google Scholar]
  23. Farokhi F, Shames I and Batterham N. Secure and private control using semi-homomorphic encryption. Control Eng Pract 2017; 67: 13–20. [CrossRef] [Google Scholar]
  24. Kishida M. Encrypted control system with quantiser. IET Control Theory Appl 2019; 13: 146–51. [CrossRef] [Google Scholar]
  25. Murguia C, Farokhi F and Shames I. Secure and private implementation of dynamic controllers using semihomomorphic encryption. IEEE Trans Autom Control 2020; 65: 3950–7. [CrossRef] [Google Scholar]
  26. Garcia E and Antsaklis PJ. Model-based event-triggered control for systems with quantization and time-varying network delays. IEEE Trans Autom Control 2012; 58: 422–34. [Google Scholar]
  27. Paillier P. Public-key cryptosystems based on composite degree residuosity classes. In: Advances in Cryptology- EUROCRYP’99: International Conference on the Theory and Application of Cryptographic Techniques Prague, Czech Republic, May 2–6, 1999 Proceedings 18. Springer Berlin Heidelberg, 1999, 223–8. [Google Scholar]
  28. Acar A, Aksu H and Uluagac AS et al. A survey on homomorphic encryption schemes: theory and implementation. ACM Comput Surv 2018; 51: 1–35. [Google Scholar]
  29. Shi P, Wang H and Lim CC. Network-based event-triggered control for singular systems with quantizations. IEEE Trans Ind Electron 2016; 63: 1230–8. [CrossRef] [Google Scholar]
  30. Brockett RW and Liberzon D. Quantized feedback stabilization of linear systems. IEEE Trans Autom Control 2000; 45: 1279–89. [CrossRef] [Google Scholar]
  31. https://github.com/martin-kaluz/PaillierCrypto-matlab. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.