Issue
Security and Safety
Volume 2, 2023
Security and Safety in Physical Layer Systems
Article Number 2023015
Number of page(s) 18
Section Information Network
DOI https://doi.org/10.1051/sands/2023015
Published online 03 July 2023
  1. Yan S, Zhou X and Hu J, et al. Low probability of detection communication: Opportunities and challenges. IEEE Wireless Commun 2019; 26: 19–25. [CrossRef] [Google Scholar]
  2. Jiang X, Chen X and Tang J, et al. Covert communication in UAV-assisted air-ground networks. IEEE Wireless Commun 2021; 28: 190–7. [CrossRef] [Google Scholar]
  3. He B, Yan S and Zhou X, et al. On covert communication with noise uncertainty. IEEE Commun Lett 2017; 21: 941–4. [CrossRef] [Google Scholar]
  4. Wang D, Qi P and Zhao Y, et al. Covert wireless communication with noise uncertainty in space-air-ground integrated vehicular networks. IEEE Trans Intell Transp Syst 2022; 23: 2784–97. [CrossRef] [Google Scholar]
  5. Hu J, Yan S and Zhou X, et al. Covert communications without channel state information at receiver in IoT systems. IEEE Internet Things J 2020; 7: 11103–14. [CrossRef] [Google Scholar]
  6. Shahzad K and Zhou X. Covert wireless communications under quasi-static fading with channel uncertainty. IEEE Trans Inf Forensics Secur 2021; 16: 1104–16. [CrossRef] [Google Scholar]
  7. Cheng Z, Si J and Li Z, et al. Covert surveillance via proactive eavesdropping under channel uncertainty. IEEE Trans Commun 2021; 69: 4024–37. [CrossRef] [Google Scholar]
  8. Liu Z, Liu J and Zeng Y, et al. Covert wireless communications in IoT systems: Hiding information in interference. IEEE Wireless Commun 2018; 25: 46–52. [CrossRef] [Google Scholar]
  9. He B, Yan S and Zhou X, et al. Covert wireless communication with a poisson field of interferers. IEEE Trans Wireless Commun 2018; 17: 6005–17. [CrossRef] [Google Scholar]
  10. Cho KH and Lee SH. Treating interference as noise is optimal for covert communication over interference channels. IEEE Trans Inf Forensics Secur 2021; 16: 322–32. [CrossRef] [Google Scholar]
  11. Zheng T, Yang Z and Wang C, et al. Wireless covert communications aided by distributed cooperative jamming over slow fading channels. IEEE Trans Wireless Commun 2021; 20: 7026–39. [CrossRef] [Google Scholar]
  12. Shahzad K, Zhou X and Yan S, et al., Achieving covert wireless communications using a full-duplex receiver. IEEE Trans Wireless Commun 2018; 17: 8517–30. [CrossRef] [Google Scholar]
  13. Shu F, Xu T and Hu J, et al. Delay-constrained covert communications with a full-duplex receiver. IEEE Wireless Commun Lett 2019; 8: 813–6. [CrossRef] [Google Scholar]
  14. Shmuel O, Cohen A and Gurewitz O. Multi-antenna jamming in covert communication. IEEE Trans Commun 2021; 69: 4644–58. [CrossRef] [Google Scholar]
  15. Hu J, Yan S and Zhou X, et al. Covert wireless communications with channel inversion power control in rayleigh fading. IEEE Trans Veh Technol 2019; 68: 12135–49. [CrossRef] [Google Scholar]
  16. Hu J, Yan S and Zhou X, et al. Covert communication achieved by a greedy relay in wireless networks. IEEE Trans Wireless Commun 2018; 17: 4766–79. [CrossRef] [Google Scholar]
  17. Hu J, Yan S and Shu F, et al., Covert transmission with a self-sustained relay. IEEE Trans Wireless Commun 2019; 18: 4089–102. [CrossRef] [Google Scholar]
  18. Lv L, Li Z and Ding H, et al. Achieving covert wireless communication with a multi-antenna relay. IEEE Trans Inf Forensics Secur 2022; 17: 760–73. [CrossRef] [Google Scholar]
  19. Sun R, Yang B and Ma S, et al. Covert rate maximization in wireless full-duplex relaying systems with power control. IEEE Trans Commun 2021; 69: 6198–212. [CrossRef] [Google Scholar]
  20. Su Y, Sun H and Zhang Z, et al. Covert communication with relay selection. IEEE Wireless Commun Lett 2020; 10: 421–5. [Google Scholar]
  21. Wang H, Zhang Y and Zhang X, et al. Secrecy and covert communications against UAV surveillance via multi-hop networks. IEEE Trans Commun 2019; 68: 389–401. [Google Scholar]
  22. Sheikholeslami A, Ghaderi M and Towsley D, et al. Multi-hop routing in covert wireless networks. IEEE Trans Wireless Commun 2018; 17: 3656–69. [CrossRef] [Google Scholar]
  23. Lu X, Hossain E and Shafique T, et al. Intelligent reflecting surface enabled covert communications in wireless networks. IEEE Network 2020; 34: 148–55. [CrossRef] [Google Scholar]
  24. Wu Q and Zhang R. Beamforming optimization for wireless network aided by intelligent reflecting surface with discrete phase shifts. IEEE Trans Commun 2019; 68: 1838–51. [Google Scholar]
  25. Zhou X, Yan S and Wu Q, et al. Intelligent reflecting surface (IRS)-aided covert wireless communications with delay constraint. IEEE Trans Wireless Commun 2021; 21: 532–47. [Google Scholar]
  26. Wu C, Yan S and Zhou X, et al. Intelligent reflecting surface (IRS)-aided covert communication with warden’s statistical CSI. IEEE Wireless Commun Lett 2021; 10: 1449–53. [CrossRef] [Google Scholar]
  27. Chen X, Zheng T and Dong L, et al. Enhancing MIMO covert communications via intelligent reflecting surface. IEEE Wireless Commun Lett 2021; 11: 33–7. [Google Scholar]
  28. Wu Y, Wang S and Luo J, et al. Passive covert communications based on reconfigurable intelligent surface. IEEE Wireless Commun Lett 2022; 11: 2445–9. [CrossRef] [Google Scholar]
  29. Wang C, Li Z and Shi J, et al. Intelligent reflecting surface-assisted multi-antenna covert communications: Joint active and passive beamforming optimization. IEEE Trans Commun 2021; 69: 3984–4000. [CrossRef] [Google Scholar]
  30. Deng D, Li X and Dang S, et al. Covert communications in intelligent reflecting surface-assisted two-way relaying networks. IEEE Trans Veh Technol 2022; 71: 12380–5. [CrossRef] [Google Scholar]
  31. Ma S, Zhang Y and Li H, et al. Covert beamforming design for intelligent-reflecting-surface-assisted IoT networks. IEEE Internet Things J 2021; 9: 5489–501. [Google Scholar]
  32. Wang C, Li Z and Zheng T, et al. Intelligent reflecting surface-aided full-duplex covert communications: Information freshness optimization. IEEE Trans Wireless Commun 2022. [Google Scholar]
  33. Wang C, Chen X and An J, et al. Covert communication assisted by UAV-IRS. IEEE Trans Commun 2022; 71: 357–69. [Google Scholar]
  34. Najafi M, Jamali V and Schober R, et al. Physics-based modeling and scalable optimization of large intelligent reflecting surfaces. IEEE Trans Commun 2021; 69: 2673–91. [CrossRef] [Google Scholar]
  35. Nguyen NT, Vu QD and Lee K, et al. Hybrid relay-reflecting intelligent surface-assisted wireless communications. IEEE Trans Veh Technol 2022; 71: 6228–44. [CrossRef] [Google Scholar]
  36. Renzo MD, Debbah M and Phan-Huy DT, et al. Smart radio environments empowered by reconfigurable AI meta-surfaces: An idea whose time has come. EURASIP J Wireless Commun Networking 2019; 2019: 1–20. [CrossRef] [Google Scholar]
  37. Wang Z, Liu L and Cui S. Channel estimation for intelligent reflecting surface assisted multiuser communications: Framework, algorithms, and analysis. IEEE Trans Wireless Commun 2020; 19: 6607–20. [CrossRef] [Google Scholar]
  38. Yan S, He B and Zhou X, et al. Delay-intolerant covert communications with either fixed or random transmit power. IEEE Trans Inf Forensics Secur 2018; 14: 129–40. [Google Scholar]
  39. Bash BA, Goeckel D and Towsley D. Limits of reliable communication with low probability of detection on AWGN channels. IEEE J Sel Areas Commun 2013; 31: 1921–30. [CrossRef] [Google Scholar]
  40. Zhang S and Zhang R. Capacity characterization for intelligent reflecting surface aided MIMO communication. IEEE J Sel Areas Commun 2020; 38: 1823–38. [CrossRef] [Google Scholar]
  41. Marks BR and Wright GP. A general inner approximation algorithm for nonconvex mathematical programs. Oper Res 1978; 26: 681–3. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.