Security and Safety
Volume 2, 2023
Security and Safety in Unmanned Systems
Article Number 2023029
Number of page(s) 16
Section Other Fields
Published online 12 December 2023
  1. Watts AC, Ambrosia VG and Hinkley EA. Unmanned aircraft systems in remote sensing and scientific research: classification and considerations of use. Remote Sens 2012; 4: 1671–92. [CrossRef] [Google Scholar]
  2. Verfuss UK, Aniceto AS, Harris DV et al. A review of unmanned vehicles for the detection and monitoring of marine fauna. Mar Pollut Bull 2019; 140: 17–29. [CrossRef] [PubMed] [Google Scholar]
  3. Olfati-Saber R and Murray RM. Consensus problems in networks of agents with switching topology and time-delays. IEEE Trans Autom Control 2004; 49: 1520–33. [CrossRef] [Google Scholar]
  4. Yang R, Liu L and Feng G. An overview of recent advances in distributed coordination of multi-agent systems. Unmanned Syst 2022; 10: 307–25. [CrossRef] [Google Scholar]
  5. Shan H, Xue H, Hu S et al. Finite-time dynamic surface control for multi-agent systems with prescribed performance and unknown control directions. Int J Syst Sci 2022; 53: 325–36. [CrossRef] [Google Scholar]
  6. Zhang J, Liu S and Zhang X. Observer-based distributed consensus for nonlinear multi-agent systems with limited data rate. Sci Chin Inf Sci 2022; 65 192204. [Google Scholar]
  7. Zhu Y, Wang Z, Liang H et al. Neural-network-based predefined-time adaptive consensus in nonlinear multi-agent systems with switching topologies. IEEE Trans Neural Networks Learn Syst 2023, doi: [Google Scholar]
  8. Chen J, Xie J, Li J et al. Human-in-the-loop fuzzy iterative learning control of consensus for unknown mixed-order nonlinear multi-agent systems. IEEE Trans Fuzzy Syst 2023, doi: 10.1109/TFUZZ.2023.3296572. [Google Scholar]
  9. Zhang H, Jiang H, Luo Y et al. Data-driven optimal consensus control for discrete-time multi-agent systems with unknown dynamics using reinforcement learning method. IEEE Trans Ind Electron 2016; 64: 4091–100. [Google Scholar]
  10. Li S, Zhang J, Li X et al. Formation control of heterogeneous discrete-time nonlinear multi-agent systems with uncertainties. IEEE Trans Ind Electron 2017; 64: 4730–40. [CrossRef] [Google Scholar]
  11. Jiang Y, Fan J, Gao W et al. Cooperative adaptive optimal output regulation of nonlinear discrete-time multi-agent systems. Automatica 2020; 121: 109149. [CrossRef] [Google Scholar]
  12. Li H and Li X. Distributed fixed-time consensus of discrete-time heterogeneous multi-agent systems via predictive mechanism and Lyapunov approach. IEEE Trans Circuits Syst II: Express Briefs 2023, doi: 10.1109/TCSII.2023.3302136. [Google Scholar]
  13. Fu M and Xie L. The sector bound approach to quantized feedback control. IEEE Trans Autom Control 2005; 50: 1698–711. [CrossRef] [Google Scholar]
  14. Hayakawa T, Ishii H and Tsumura K. Adaptive quantized control for linear uncertain discrete-time systems. Automatica 2009; 45: 692–700. [CrossRef] [Google Scholar]
  15. Nesic D and Liberzon D. A unified framework for design and analysis of networked and quantized control systems. IEEE Trans Autom Control 2009; 54: 732–47. [CrossRef] [Google Scholar]
  16. Zhang Y, Zhang J, Liu X et al. Quantized-output feedback model reference control of discrete-time linear systems. Automatica 2022; 137: 110027. [CrossRef] [Google Scholar]
  17. Liu G, Pan Y, Lam HK et al. Event-triggered fuzzy adaptive quantized control for nonlinear multi-agent systems in nonaffine pure-feedback form. Fuzzy Sets Syst 2021; 416: 27–46. [CrossRef] [Google Scholar]
  18. Liu W, Ma Q, Xu S et al. State quantized output feedback control for nonlinear systems via event-triggered sampling. IEEE Trans Autom Control 2022; 67: 6810–17. [CrossRef] [Google Scholar]
  19. Carli R, Fagnani F, Frasca P et al. Efficient quantized techniques for consensus algorithms. NeCST workshop 2007; 1–8. [Google Scholar]
  20. Li T and Xie L. Distributed consensus over digital networks with limited bandwidth and time-varying topologies. Automatica 2011; 47: 2006–15. [CrossRef] [Google Scholar]
  21. Dong W. Consensus of high-order nonlinear continuous-time systems with uncertainty and limited communication data rate. IEEE Trans Autom Control 2009; 64: 2100–2107. [Google Scholar]
  22. Zhang H, Chi R, Hou Z et al. Data-driven iterative learning control using a uniform quantizer with an encoding–decoding mechanism. Int J Robust Nonlinear Control 2022; 32: 4336–4354. [CrossRef] [Google Scholar]
  23. Ren H, Liu R, Cheng Z et al. Data-driven event-triggered control for nonlinear multi-agent systems with uniform quantization. IEEE Trans Circuits Syst II: Express Briefs 2023, doi: 10.1109/TCSII.2023.3305946. [Google Scholar]
  24. Zhu P, Jin S, Bu X et al. Distributed data-driven control for a connected heterogeneous vehicle platoon under quantized and switching topologies communication. IEEE Trans Veh Technol 2023; 72: 9796–807. [CrossRef] [Google Scholar]
  25. Wang P, Ren X, Hu S et al. Event-based adaptive compensation control of nonlinear cyber-physical systems under actuator failure and false data injection attack. In: 2021 40th Chinese Control Conference. IEEE, 2021, 509–14. [CrossRef] [Google Scholar]
  26. Guo H, Sun J and Pang Z. Residual-based false data injection attacks against multi-sensor estimation systems. IEEE/CAA J Autom Sinica 2023;in press, doi: 10.1109/JAS.2023.123441. [Google Scholar]
  27. Li X, Zhou Q, Li P et al. Event-triggered consensus control for multi-agent systems against false data-injection attacks. IEEE Trans Cybern 2020; 50: 1856–66. [CrossRef] [PubMed] [Google Scholar]
  28. Meng M, Xiao G, Li B. Adaptive consensus for heterogeneous multi-agent systems under sensor and actuator attacks. Automatica 2020; 122: 109242. [CrossRef] [Google Scholar]
  29. Zhang S, Che W and Deng C. Observer-based event-triggered secure synchronization control for multi-agent systems under false data injection attacks. Int J. Robust Nonlinear Control 2022; 32: 4843–60. [CrossRef] [Google Scholar]
  30. Wang Z, Shi S, He W et al. Observer-based asynchronous event-triggered bipartite consensus of multi-agent systems under false data injection attacks. IEEE Trans Control Netw Syst 2023; in press, doi: 10.1109/TCNS.2023.3235425. [Google Scholar]
  31. Huo S, Huang D, Zhang Y. Secure output synchronization of heterogeneous multi-agent systems against false data injection attacks. Sci Chin Inf Sci 2022; 65: 162204. [CrossRef] [Google Scholar]
  32. Hu Z, Chen K, Deng F et al. H controller design for networked systems with two-channel packet dropouts and FDI attacks. IEEE Trans Cybern 2023, doi: 10.1109/TCYB.2022.3233065. [PubMed] [Google Scholar]
  33. Wei B, Tian E, Gu Z et al. Quasi-consensus control for stochastic multiagent systems: when energy harvesting constraints meet multimodal FDI attacks. IEEE Trans Cybern 2023, doi: 10.1109/TCYB.2023.3253141. [PubMed] [Google Scholar]
  34. Tahoun A and Arafa M. Cooperative control for cyber-physical multi-agent networked control systems with unknown false data-injection and replay cyber-attacks. ISA Trans 2021; 110: 1–14. [CrossRef] [PubMed] [Google Scholar]
  35. Cao L, Ren H, Li H et al. Event-triggered output-feedback control for large-scale systems with unknown hysteresis. IEEE Trans Cybern 2020; 51: 5236–47. [Google Scholar]
  36. Chen G, Yao D, Li H et al. Saturated threshold event-triggered control for multiagent systems under sensor attacks and its application to UAVs. IEEE Trans Circuits Syst I Regul Pap 2021; 69: 884–95. [Google Scholar]
  37. Hashemi M, Javad A, Jafar G et al. Robust adaptive actuator failure compensation for a class of uncertain nonlinear systems. Int J Autom Comput 2017; 14: 719–28. [CrossRef] [Google Scholar]
  38. Liu H and Zhang T. Adaptive neural network finite-time control for uncertain robotic manipulators. J Int Robotic Syst 2014; 75: 363–77. [CrossRef] [Google Scholar]
  39. Du J, Guo C, Yu S et al. Adaptive autopilot design of time-varying uncertain ships with completely unknown control coefficient. IEEE J Oceanic Eng 2007; 32: 346–52. [CrossRef] [Google Scholar]
  40. Park J and Sandberg IW. Universal approximation using radial-basis-function networks. Neural Comput 1991; 3: 246–57. [CrossRef] [PubMed] [Google Scholar]
  41. Jagannathan S, Vandegrift MW and Lewis FL. Adaptive fuzzy logic control of discrete-time dynamical systems. Automatica 2000; 36: 229–41. [CrossRef] [Google Scholar]
  42. Ma H and Yang GH. Simultaneous fault diagnosis for robot manipulators with actuator and sensor faults. Inf Sci 2016; 366: 12–30. [CrossRef] [Google Scholar]
  43. Tzeng C, Goodwin G and Crisafulli S. Feedback linearization design of a ship steering autopilot with saturating and slew rate limiting actuator. Int J Adap Control Signal Process 1999; 13: 23–30. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.