Open Access
Research Article
Issue
Security and Safety
Volume 1, 2022
Article Number 2022003
Number of page(s) 21
Section Intelligent Transportation
DOI https://doi.org/10.1051/sands/2022003
Published online 22 June 2022
  1. Chadza T, Kyriakopoulos KG and Lambotharan S. Analysis of hidden Markov model learning algorithms for the detection and prediction of multi-stage network attacks. Future Gener Comput Syst 2020; 108: 636–49. [CrossRef] [Google Scholar]
  2. Sendi AS, Dagenais M and Jabbarifar M et al. Real time intrusion prediction based on optimized alerts with hidden Markov model. J Netw 2012; 7: 311–21. [Google Scholar]
  3. Kavousi F and Akbari B. Automatic learning of attack behavior patterns using Bayesian networks. In: Proc. IEEE IST, Tehran, Iran, November 2012, 999–1004. [Google Scholar]
  4. Wang S., Tang G and Kou G. et al. An attack graph generation method based on heuristic searching strategy. In: Proc. IEEE ICCC, Paris, France, July 2016, 1180–5. [Google Scholar]
  5. Holgado P, Villagrá VA, Vázquez L. Real-time multistep attack prediction based on hidden Markov models. IEEE Trans Dependable Secure Comput 2020; 17: 134–47. [CrossRef] [Google Scholar]
  6. Lyu L, Yu H and Yang Q. Threats to federated learning. Berlin, Germany: Springer, 2020. [Google Scholar]
  7. Hayes J and Ohrimenko O. Contamination attacks and mitigation in multi-party machine learning. In: Proc. NIPS, Montreal, QC, Canada, December 2018, 6604–15. [Google Scholar]
  8. Zhang J, Chen J and Wu D et al. Poisoning attack in federated learning using generative adversarial nets. In: Proc. IEEE TrustCom/BigDataSE, Rotorua, New Zealand, August 2019, 374–80. [Google Scholar]
  9. Lim WYB, Luong NC and Hoang DT et al. Federated learning in mobile edge networks: a comprehensive survey. IEEE Commun Surv Tutorials 2020; 22: 2031–63. [CrossRef] [Google Scholar]
  10. Xie C., Koyejo S and Gupta I. Slsgd: Secure and efficient distributed on-device machine learning. In: Proc. ECML PKDD, Würzburg, Germany, September 2019, 213–28. [Google Scholar]
  11. Fung C, Yoon CJ and Beschastnikh I. The limitations of federated learning in sybil settings. In: Proc. RAID, San Sebastian, Spain, October 2020, 301–16. [Google Scholar]
  12. Fang M., Cao X and Jia J. et al. Local model poisoning attacks to byzantine-robust federated learning. In: Proc. USENIX Security, Boston, MA, USA, August 2020, 1605–22. [Google Scholar]
  13. Zhang J, Chen B and Cheng X et al. Poisongan: generative poisoning attacks against federated learning in edge computing systems. IEEE Internet Things J 2020; 8: 3310–22. [Google Scholar]
  14. Tan J, Liang YC and Luong NC et al. Toward smart security enhancement of federated learning networks. IEEE Netw 2020; 35: 340–7. [Google Scholar]
  15. Yin D., Chen Y and Kannan R. et al. Byzantine-robust distributed learning: towards optimal statistical rates. In: Proc. PMLR ICML, Stockholm, Sweden, July 2018, 5650–9. [Google Scholar]
  16. Blanchard P., El Mhamdi EM and Guerraoui R et al. Machine learning with adversaries: byzantine tolerant gradient descent. In: Proc. NeurIPS, Long Beach, CA, USA, December 2017, 118–28. [Google Scholar]
  17. Chen Y., Su L and Xu J. Distributed statistical machine learning in adversarial settings: byzantine gradient descent. In: Proc. ACM SIGMETRICS, Irvine, California, June 2018, 1–28. [Google Scholar]
  18. Kang J, Xiong Z and Niyato D et al. Reliable federated learning for mobile networks. IEEE Wireless Commun 2020; 27: 72–80. [CrossRef] [Google Scholar]
  19. Taheri R, Shojafar M and Alazab M et al. Fed-IIoT: a robust federated malware detection architecture in industrial IoT. IEEE Trans Ind Inform 2020; 17: 8442–52. [Google Scholar]
  20. Doshi R., Apthorpe N and Feamster N. Machine learning DDoS detection for consumer Internet of things devices. In: Proc. IEEE SPW, Gothenburg, Sweden, May 2018, 29–35. [Google Scholar]
  21. Agrawal N and Tapaswi S. Defense mechanisms against ddos attacks in a cloud computing environment: state-of-the-art and research challenges. IEEE Commun Surv Tutorials 2019; 21: 3769–95. [CrossRef] [Google Scholar]
  22. Van Hasselt H., Guez A and Silver D. Deep reinforcement learning with double q-learning. In: Proc. AAAI, Phoenix, Arizona, USA, February 2016, 2094–100. [Google Scholar]
  23. Sutton RS and Barto AG. Reinforcement Learning: An Introduction. Cambridge, MA, USA: MIT Press, 2018. [Google Scholar]
  24. Bogler PL. Shafer-Dempster reasoning with applications to multisensor target identification systems. IEEE Trans Syst Man Cybern 1987; 17: 968–77. [CrossRef] [Google Scholar]
  25. Xu R and Wunsch D. Survey of clustering algorithms. IEEE Trans Neural Netw 2005; 16: 645–78. [CrossRef] [PubMed] [Google Scholar]
  26. Zhang G, Zhang C and Zhang H. Improved k-means algorithm based on density canopy. Knowl-Based Syst 2018; 145: 289–97. [CrossRef] [Google Scholar]
  27. Xiang Z, Miller DJ, Kesidis G. A benchmark study of backdoor data poisoning defenses for deep neural network classifiers and a novel defense. In: Proc. MLSP, Pittsburgh, USA, October 2019, 1–6. [Google Scholar]
  28. Chen B., Carvalho W and Baracaldo N. et al. Detecting backdoor attacks on deep neural networks by activation clustering. In: Proc. AAAI, Honolulu, Hawaii, January 2019, 1–8. [Google Scholar]
  29. Li D, Wong WE and Wang W et al. Detection and mitigation of label-flipping attacks in federated learning systems with KPCA and K-means. In: Proc. DSA, Yinchuan, China, August 2021, 551–9. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.