Open Access
Security and Safety
Volume 1, 2022
Article Number 2022008
Number of page(s) 18
Section Social Governance
Published online 25 July 2022
  1. Han J, Pei J and Kamber M. Data Mining: Concepts and Techniques. The Netherlands: Elsevier, 2011. [Google Scholar]
  2. Jia JS, Lu X and Yuan Y et al. Population flow drives spatio-temporal distribution of COVID-19 in China. Nature 2020, 582: 389–94. [CrossRef] [PubMed] [Google Scholar]
  3. Park Y and Ho JC. Tackling overfitting in boosting for noisy healthcare data. IEEE Trans Knowl Data Eng 2021; 33: 2995–3006. [CrossRef] [Google Scholar]
  4. Wang W, Lesner C and Ran A et al. Using small business banking data for explainable credit risk scoring. Proc AAAI Conf Artif Intell 2020; 34: 13396–401. [Google Scholar]
  5. Liu Y, Ao X and Zhong Q et al. Alike and unlike: Resolving class imbalance problem in financial credit risk assessment. In: Proc. 29th ACM Int. Conf. Inf. Knowl. Manag. Virtual Event, Ireland, Oct. 19-23, 2020, 2125–8. [Google Scholar]
  6. De Montjoye YA, Radaelli L and Singh VK et al. Unique in the shopping mall: On the reidentifiability of credit card metadata. Science 2015; 347: 536–9. [CrossRef] [PubMed] [Google Scholar]
  7. Zhang L, Shen J and Zhang J et al. Multimodal marketing intent analysis for effective targeted advertising. IEEE Trans Multim 2022; 24: 1830–43. [CrossRef] [Google Scholar]
  8. Deng A and Hooi B. Graph neural network-based anomaly detection in multivariate time series. Proc AAAI Conf Artif Intell 2021; 35: 4027–35. [Google Scholar]
  9. Hu W, Gao J and Li B et al. Anomaly detection using local kernel density estimation and context-based regression. IEEE Trans Knowl Data Eng 2018; 32: 218–33. [Google Scholar]
  10. Wu FJ and Luo T. Crowdprivacy: Publish more useful data with less privacy exposure in crowdsourced location-based services. ACM Trans Priv Secur 2020; 23: 6:1–25. [Google Scholar]
  11. Holt JD and Chung SM. Efficient mining of association rules in text databases. In: Proc. 1999 ACM CIKM Int. Conf. Inf. Knowl. Manag., Kansas City, Missouri, USA, Nov. 2-6, 1999, 234–42. [Google Scholar]
  12. Sankar L, Rajagopalan SR and Poor HV. Utility-privacy tradeoffs in databases: An information-theoretic approach. IEEE Trans Inf Forensics Secur 2013, 8: 838–52. [CrossRef] [Google Scholar]
  13. Narayanan A and Shmatikov V. Robust de-anonymization of large sparse datasets. In: 2008 IEEE Symp. Secur. Priv. (SP), Oakland, CA, USA, May 18-22, 2008, 111–25. [CrossRef] [Google Scholar]
  14. Li S, Ji X and You W. A personalized differential privacy protection method for repeated queries. In: 2019 IEEE 4th Int. Conf. Big Data Anal. (ICBDA), Suzhou, China, Mar. 15-18, 2019, 274–280. [CrossRef] [Google Scholar]
  15. Dwork C and Roth A. The algorithmic foundations of differential privacy. Found Trends Theor Comput Sci 2014; 9: 211–407. [Google Scholar]
  16. Machanavajjhala A, Kifer D and Gehrke J et al. L-diversity: Privacy beyond k-anonymity. ACM Trans Knowl Discov Data 2007; 1: 3. [CrossRef] [Google Scholar]
  17. Li N, Li T and Venkatasubramanian S. t-closeness: Privacy beyond k-anonymity and l-diversity. In: Proc. 23rd Int. Conf. Data Eng., The Marmara Hotel, Istanbul, Turkey, Apr. 15-20, 2007, 106–15. [Google Scholar]
  18. Yang Q, Liu Y and Chen T et al. Federated machine learning: Concept and applications. ACM Trans Intell Syst Technol 2019; 10: 12:1–19. [Google Scholar]
  19. Mohassel P and Zhang Y. Secureml: A system for scalable privacy-preserving machine learning. In: 2017 IEEE Symp. Secur. Priv. (SP), San Jose, CA, USA, May 22-26, 2017, 19–38. [CrossRef] [Google Scholar]
  20. Chen H, Dai W and Kim M et al. Efficient multi-key homomorphic encryption with packed ciphertexts with application to oblivious neural network inference. In Proc. 2019 ACM SIGSAC Conf. Comput. Commun. Secur., CCS 2019, London, UK, Nov. 11-15, 2019, 395–412. [Google Scholar]
  21. Fredrikson M, Lantz E and Jha S et al. Privacy in pharmacogenetics: An end-to-end case study of personalized warfarin dosing. In: Proc. 23rd USENIX Secur. Symp., San Diego, CA, USA, Aug. 20-22, 2014, 17–32. [Google Scholar]
  22. Krause A and Horvitz E. A utility-theoretic approach to privacy and personalization. In: Proc. Twenty-Third AAAI Conf. Artif. Intell., Chicago, Illinois, USA, July 13-17, 2008, Vol. 8, 1181–8. [Google Scholar]
  23. Gross R, Airoldi E and Malin B et al. Integrating Utility into Face De-identification. Berlin, Heidelberg: Springer, 2006. [Google Scholar]
  24. Yang Q, Wang C and Wang C et al. Fundamental limits of data utility: A case study for data-driven identity authentication. IEEE Trans Comput Soc Syst 2020; 8: 398–409. [Google Scholar]
  25. Datta A, Fredrikson M and Ko G et al. Use privacy in data-driven systems: Theory and experiments with machine learnt programs. In: Proc. 2017 ACM SIGSAC Conf. Comput. Commun. Secur., CCS 2017, Dallas, TX, USA, Oct. 30-Nov. 03, 2017, 1193–210. [Google Scholar]
  26. Tseng BW and Wu PY. Compressive privacy generative adversarial network. IEEE Trans Inf Forensics Secur 2020; 15: 2499–513. [CrossRef] [Google Scholar]
  27. Kim H, Park J and Min K et al. Anomaly monitoring framework in lane detection with a generative adversarial network. IEEE Trans Intell Transp Syst 2020; 22: 1603–15. [Google Scholar]
  28. Ruffino C, Hérault R and Laloy E et al. Pixel-wise conditioned generative adversarial networks for image synthesis and completion. Neurocomputing 2020; 416: 218–30. [CrossRef] [Google Scholar]
  29. Zhang K, Zhong G and Dong J et al. Stock market prediction based on generative adversarial network. Proc Comput Sci 2019; 147: 400–6. [CrossRef] [Google Scholar]
  30. Xie L, Lin K and Wang S et al. Differentially private generative adversarial network, arXiv preprint arXiv:1802.06739, 2018. [Google Scholar]
  31. Jordon J, Yoon J and van der Schaar M. PATE-GAN: Generating synthetic data with differential privacy guarantees. In: 7th Int. Conf. Learn. Represent., ICLR 2019, New Orleans, LA, USA, May 6-9, 2019. [Google Scholar]
  32. Warner SL. Randomized response: A survey technique for eliminating evasive answer bias. J Am Stat Assoc 1965; 60: 63–9. [CrossRef] [PubMed] [Google Scholar]
  33. Aggarwal CC and Philip SY. A Condensation Approach to Privacy Preserving Data Mining. Berlin, Heidelberg: Springer, 2004. [Google Scholar]
  34. Dwork C. Differential privacy. In: Autom. Lang. Program. 33rd Int. Colloq. ICALP 2006, Venice, Italy, Jul. 10-14, 2006, Proc. Part II, 2006, 1–12. [Google Scholar]
  35. Sweeney L. k-anonymity: A model for protecting privacy. Int J Uncertain Fuzziness Knowl Based Syst 2002; 10: 557–70. [CrossRef] [Google Scholar]
  36. Zhao C, Zhao S and Zhao M et al. Secure multi-party computation: Theory, practice and applications. Inf Sci 2019; 476: 357–72. [CrossRef] [Google Scholar]
  37. Elgamal T. A public key cryptosystem and a signature scheme based on discrete logarithms. IEEE Trans Inf Theor 1985; 31: 469–72. [CrossRef] [Google Scholar]
  38. Ullah S, Li XY and Hussain MT et al. Kernel homomorphic encryption protocol. J Inf Secur Appl 2049; 48: 102366. [Google Scholar]
  39. Kairouz P, Oh S and Viswanath P. Extremal mechanisms for local differential privacy. J Mach Learn Res 2016; 17: 492–542. [Google Scholar]
  40. Goodfellow I, Pouget-Abadie J and Mirza M et al. Generative adversarial nets. In: Adv. Neural Inf. Process. Syst. 27: Annu. Conf. Neural Inf. Process. Syst. 2014, Montreal, Quebec, Canada, Dec. 8-13, 2014, 2672–2680. [Google Scholar]
  41. Mirza M and Osindero S. Conditional generative adversarial nets, arXiv preprint arXiv:1411.1784, 2014. [Google Scholar]
  42. Torra V. Data Privacy: Foundations, New Developments and the Big Data Challenge. Heidelberg: Springer, 2017. [CrossRef] [Google Scholar]
  43. Xu L, Jiang C and Wang J et al. Information security in big data: Privacy and data mining. IEEE Access 2014; 2: 1149–76. [CrossRef] [Google Scholar]
  44. Estévez PA, Tesmer M and Perez CA et al. Normalized mutual information feature selection. IEEE Trans Neural Netw 2009; 20: 189–201. [CrossRef] [PubMed] [Google Scholar]
  45. Jaynes ET. Information theory and statistical mechanics. Phys Rev 1957; 106: 620. [CrossRef] [Google Scholar]
  46. Benesty J, Chen J and Huang Y et al. Pearson correlation coefficient. Berlin, Heidelberg: Springer, 2009. [Google Scholar]
  47. Nargesian F, Samulowitz H and Khurana U et al. Learning feature engineering for classification, In: Proc. Twenty-Sixth Int. Jt. Conf. Artif. Intell., IJCAI 2017, Melbourne, Australia, Aug. 19-25, 2017, 2529–35. [Google Scholar]
  48. Datta A, Sen S and Zick Y. Algorithmic transparency via quantitative input influence: Theory and experiments with learning systems. In: 2016 IEEE Symp. Secur. Priv. (SP), San Jose, CA, USA, May 22-26, 2016, 598–617. [CrossRef] [Google Scholar]
  49. Hild II KE, Erdogmus D and Torkkola K et al. Feature extraction using information-theoretic learning. IEEE Trans Pattern Anal Mach Intell 2006; 28: 1385–92. [CrossRef] [PubMed] [Google Scholar]
  50. Kingma DP and Welling M. Auto-encoding variational bayes. In: Bengio Y and LeCun Y, editors, 2nd Int. Conf. Learn. Represent., ICLR 2014, Ban, AB, Canada, Apr. 14-16, 2014, Conf. Track Proc., 2014. [Google Scholar]
  51. Menéndez ML, Pardo JA and Pardo L et al. The jensen-shannon divergence. J Frankl Inst 1997; 334: 307–18. [CrossRef] [Google Scholar]
  52. Chen T and Guestrin C. XGBoost: A scalable tree boosting system. In: Proc. 22nd ACM SIGKDD Int. Conf. Knowl. Discov. Data Mining, San Francisco, CA, USA, Aug. 13-17, 2016, 785–94. [Google Scholar]
  53. Friedman JH. Greedy function approximation: A gradient boosting machine. Annal Stat 2001; 29: 1189–232. [CrossRef] [Google Scholar]
  54. Li Q, Wen Z and He B. Practical federated gradient boosting decision trees. Proc AAAI Conf Artif Intell 2020; 34: 4642–9. [Google Scholar]
  55. Breiman L. Random forests. Mach Learn 2001; 45: 5–32. [Google Scholar]
  56. Anthony M and Bartlett PL. Neural Network Learning: Theoretical Foundations. Cambridge: Cambridge University Press, 2009. [Google Scholar]
  57. Pan X and Xu Y. A safe feature elimination rule for L1-regularized logistic regression. IEEE Trans Pattern Anal Mach Intell 2021. [PubMed] [Google Scholar]
  58. Fehr S and Berens S. On the conditional Rényi entropy. IEEE Trans Inf Theor 2014; 60: 6801–10. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.