Open Access
Review
Issue
Security and Safety
Volume 1, 2022
Article Number 2022007
Number of page(s) 30
Section Information Network
DOI https://doi.org/10.1051/sands/2022007
Published online 22 July 2022
  1. Zhu H and Wang J. Chunk-based resource allocation in OFDMA systems - Part I: Chunk allocation. IEEE Trans Commun 2009; 57: 2734–44. [CrossRef] [Google Scholar]
  2. Zhu H and Wang J. Chunk-based resource allocation in OFDMA systems - Part II: Joint chunk, power and bit allocation. IEEE Trans Commun 2012; 60: 499–509. [CrossRef] [Google Scholar]
  3. Wang J, Zhu H and Gomes N. Distributed antenna systems for mobile communications in high speed trains. IEEE J Sel Areas Commun 2012; 30: 675–83. [CrossRef] [Google Scholar]
  4. Zhou Y, Wang J and Sawahashi M. Downlink transmission of broadband OFCDM systems - Part I: Hybrid detection. IEEE Trans Commun 2005, 53: 718–29. [CrossRef] [Google Scholar]
  5. Zhou Y, Liu H and Pan Z et al. Two-stage cooperative multicast transmission with optimized power consumption and guaranteed coverage. IEEE J Sel Areas Commun 2014; 32: 274–84. [CrossRef] [Google Scholar]
  6. Wu Y, Khisti A and Xiao C et al. A survey of PHY security techniques for 5G wireless networks and challenges ahead. IEEE J Sel Areas Commun 2018; 36: 679–95. [CrossRef] [Google Scholar]
  7. Abdeldime MA and Wu L. The physical layer of the IEEE 802.11p wave communication standard: The specifications and challenges. In: Proc. World Congr. Eng. Comput. Sci. (WCECS), Vol. 2, San Francisco, CA, USA, Oct. 2014, 22-4. [Google Scholar]
  8. Chen X, Ng DWK and Gerstacker WH et al. A survey on multiple-antenna techniques for PHY security. IEEE Commun Surv Tutor 2017; 19: 1027–53. [CrossRef] [Google Scholar]
  9. Hu J, Yan S and Zhou X et al. Covert communication achieved by a greedy relay in wireless networks. IEEE Trans Wirel Commun 2018; 17: 4766–79. [CrossRef] [Google Scholar]
  10. Chou TH, Draper SC and Sayeed AM et al. Secret key generation from sparse wireless channels: Ergodic capacity and secrecy outage. IEEE J Sel Areas Commun 2013; 31: 1751–64. [CrossRef] [Google Scholar]
  11. Csiszar I and Korner J. Broadcast channels with confidential messages. IEEE Trans Inf Theory 1978; 24: 339–48. [CrossRef] [Google Scholar]
  12. Leung-Yan-Cheong S and Hellman M. The Gaussian wire-tap channel. IEEE Trans Inf Theory 1978; 24: 451–6. [CrossRef] [Google Scholar]
  13. Wang D, Bai B and Zhao W et al. A survey of optimization approaches for wireless PHY security. IEEE Commun Surv Tutor 2019; 21: 1878–911. [CrossRef] [Google Scholar]
  14. Leung-Yan-Cheong S and Hellman M. The Gaussian wire-tap channel. IEEE Trans Inf Theory 1978; 24: 451–6. [CrossRef] [Google Scholar]
  15. Wang X, Tao M and Mo J et al. Power and subcarrier allocation for physical-layer security in OFDM-based broadband wireless networks. IEEE Trans Inf Forensics Secur 2011; 61: 693–702. [CrossRef] [Google Scholar]
  16. Ng DWK, Lo ES and Schober R. Energy-efficient resource allocation for secure OFDM systems. IEEE Trans Veh Technol 2012; 61: 2572–85. [CrossRef] [Google Scholar]
  17. Jeong C, Kim I-M. Optimal power allocation for secure multicarrier relay systems. IEEE Trans Signal Process 2011; 59: 5428–42. [CrossRef] [Google Scholar]
  18. Goel S and Negi R. Guaranteeing secrecy using artificial noise. IEEE Trans Wirel Commun 2008; 7: 2180–89. [CrossRef] [Google Scholar]
  19. Hamamreh JM, Furqan HM and Arslan H. Classifications and applications of physical layer security techniques for confidentiality: A comprehensive survey. IEEE Commun Surv Tutor 2018; 21: 1773–828. [Google Scholar]
  20. Abdelgader AMS and Wu L. A secret key extraction technique applied in vehicular networks. In: Proc. IEEE 17th Int. Conf. Comput. Sci. Eng., 2014, 1396–1403. [Google Scholar]
  21. Daly MP and Bernhard JT. Beamsteering in pattern reconfigurable arrays using directional modulation. IEEE Trans Antennas Propag 2010; 58: 2259–65. [CrossRef] [Google Scholar]
  22. Mesleh RY, Haas H and Sinanovic S et al. Spatial modulation. IEEE Trans Veh Technol 2008; 57: 2228–41. [CrossRef] [Google Scholar]
  23. Wu Q and Zhang R. Towards smart and reconfigurable environment: Intelligent reflecting surface aided wireless network. IEEE Commun Mag 2020; 58: 106–12. [CrossRef] [Google Scholar]
  24. Yuliana M. A simple secret key generation by using a combination of pre-processing method with a multilevel quantization. Entropy 2019; 21: 192. [CrossRef] [PubMed] [Google Scholar]
  25. Kim Y-S, Kim J-H and Kim S-H. A secure information transmission scheme with a secret key based on polar coding. IEEE Commun Lett 2014; 18: 937–40. [CrossRef] [Google Scholar]
  26. Bhatia J and Shah B. Review on various security threats & solutions and network coding based security approach for VANET. Int J Adv Eng Technol 2013; 6: 361. [Google Scholar]
  27. Abdelgader AMS, Feng S and Wu L. Exploiting the randomness inherent of the channel for secret key sharing in vehicular communications. Int J Intell Transp Syst Res 2018; 16: 39–50. [Google Scholar]
  28. Premnath SN, Croft J and Patwari N et al. Efficient high-rate secret key extraction in wireless sensor networks using collaboration. ACM Trans Sens Netw (TOSN) 2014; 11: 1–32. [CrossRef] [Google Scholar]
  29. Mukherjee A, Fakoorian SA and Huang J et al. Principles of physical layer security in multiuser wireless networks: A survey. IEEE Commun Surv Tutor 2014; 16: 1550–73. [CrossRef] [Google Scholar]
  30. Gong C, Yue X and Zhang Z et al. Enhancing physical layer security with artificial noise in large-scale NOMA networks. IEEE Trans Veh Technol 2021; 70: 2349–61. [CrossRef] [Google Scholar]
  31. Wang Y, Yu FR and Tang H et al. A mean field game theoretic approach for security enhancements in mobile ad hoc networks. IEEE Trans Wirel Commun 2014; 13: 1616–27. [CrossRef] [Google Scholar]
  32. Bang AO and Ramteke PL. MANET: History, challenges and applications. Int J Appl Innov Eng Manag (IJAIEM) 2013; 2: 249–51. [Google Scholar]
  33. Xu J, Liu W and Lang F et al. Distance measurement model based on RSSI in WSN. Wirel Sens Netw 2010; 28: 606–11. [CrossRef] [Google Scholar]
  34. Bennett CH, Bessette F and Brassard G et al. Experimental quantum cryptography. J Cryptol 1992; 5: 3–28. [CrossRef] [Google Scholar]
  35. Greenemeier L. Election Fix? Switzerland Tests Quantum Cryptography. Scientific American, Swiss, 2007. [Google Scholar]
  36. Jana S, Premnath SN and Clark M et al. On the effectiveness of secret key extraction from wireless signal strength in real environments. In: Proc. ACM MobiCom, Beijing, China, Vol. 12, 2009, 321–32. [Google Scholar]
  37. Maurer U and Wolf S. Secret-key agreement over unauthenticated public channels Part I. Definitions and a completeness result. IEEE Trans Inf Theory 2003; 49: 822–31. [CrossRef] [Google Scholar]
  38. Lai L, Liang Y and Poor H. Key agreement over wireless fading channels with an active attacker. In: Proc. 48th Allerton Conf. Communication, Control, Computing, Monticello, IL, Sept. 2010, 1391–96. [Google Scholar]
  39. Mukherjee A, Fakoorian SA and Huang J et al. Principles of physical layer security in multiuser wireless networks: A survey. IEEE Commun Surv Tutor 2014; 16: 1550–73. [CrossRef] [Google Scholar]
  40. Zhang J, Li G and Marshall A et al. A new frontier for IoT security emerging from three decades of key generation relying on wireless channels. IEEE Access 2020; 8: 138406–46. [CrossRef] [Google Scholar]
  41. Ali IAI, Weibin Z and Zeng Z et al. An Adaptive Lossly Quantization Technique for Key Extraction Applied in Vehicular Communication. Wireless Personal Communications 2022: 1–17. [Google Scholar]
  42. Mathur S, Trappe W and Mandayam N et al. Radio-telepathy: Extracting a secret key from an unauthenticated wireless channel. In: Proc. 14th Annu. Int. Conf. Mobile Comput. Netw., San Francisco, CA, USA, Sept. 2008, 128–39. [Google Scholar]
  43. Abdelgader AMS, Wu L and Jakalan A et al. BER analysis of OFDM communication in VANET. J Netw 2016; 11: 69–79. [Google Scholar]
  44. Rezki Z, Zorgui M and Alomair B et al. Secret key agreement: Fundamental limits and practical challenges. IEEE Wirel Commun 2017; 24: 72–9. [CrossRef] [Google Scholar]
  45. Zhang J, Duong TQ and Marshall A et al. Key generation from wireless channels: A review. IEEE Access 2016; 4: 614–26. [CrossRef] [Google Scholar]
  46. Zhang J, Li G and Marshall A et al. A new frontier for IoT security emerging from three decades of key generation relying on wireless channels. IEEE Access 2020; 8: 138406–46. [CrossRef] [Google Scholar]
  47. Zeng K. Physical layer key generation in wireless networks: Challenges and opportunities. IEEE Commun Mag 2015; 53: 33–9. [CrossRef] [Google Scholar]
  48. Zhu X, Xu F and Novak E et al. Using wireless link dynamics to extract a secret key in vehicular scenarios. IEEE Trans Mob Comput 2016; 16: 2065–78. [Google Scholar]
  49. Shu F, Abdelgader AMS and Wu L et al. On channel estimation in vehicular networks. IET Commun 2016; 11: 142–9. [Google Scholar]
  50. Babakhani A, Rutledge DB and Hajimiri A. Transmitter architectures based on near-field direct antenna modulation. IEEE J Solid-State Circ 2008; 43: 2674–92. [CrossRef] [Google Scholar]
  51. Daly MP and Bernhard JT. Directional modulation technique for phased arrays. IEEE Trans Antennas Propag 2009; 57: 2633–40. [CrossRef] [Google Scholar]
  52. Daly MP, Daly EL and Bernhard JT. Demonstration of directional modulation using a phased array. IEEE Trans Antennas Propag 2010; 58: 1545–50. [CrossRef] [Google Scholar]
  53. Hong T, Song MZ and Liu Y. Dual-beam directional modulation technique for physical-layer secure communication. IEEE Antennas Wirel Propag Lett 2011; 10: 1417–20. [CrossRef] [Google Scholar]
  54. Huang G, Ding Y and Ouyang S. Multicarrier directional modulation symbol synthesis using time-modulated phased arrays. IEEE Antennas Wirel Propag Lett 2021; 20: 567–71. [CrossRef] [Google Scholar]
  55. Ding Y and Fusco VF. A vector approach for the analysis and synthesis of directional modulation transmitters. IEEE Trans. Antennas Propag 2014; 62: 361–70. [CrossRef] [Google Scholar]
  56. Ding Y and Fusco V. Orthogonal vector approach for synthesis of multi-beam directional modulation transmitters. IEEE Antennas Wirel Propag Lett 2015; 14: 1330–3. [CrossRef] [Google Scholar]
  57. Ding Y and Fusco VF. MIMO-inspired synthesis of directional modulation systems. IEEE Antennas Wirel Propag Lett 2016; 15: 580–4. [CrossRef] [Google Scholar]
  58. Hu J, Shu F and Li J. Robust synthesis method for secure directional modulation with imperfect direction angle. IEEE Commun Lett 2016; 20: 1084–7. [CrossRef] [Google Scholar]
  59. Shu F, Wu X and Li J et al. Robust synthesis scheme for secure multi-beam directional modulation in broadcasting systems. IEEE Access 2016; 4: 6614–23. [CrossRef] [Google Scholar]
  60. Shu F, ZhuWand Zhou X et al. Robust secure transmission of using main-lobe-integration-based leakage beamforming in directional modulation MU-MIMO systems. IEEE Syst J 2018; 12: 3775–85. [CrossRef] [Google Scholar]
  61. Shu F, Wu X and Hu J et al. Secure and precise wireless transmission for random-subcarrier-selection-based directional modulation transmit antenna array. IEEE J Sel Areas Commun 2018; 36: 890–904. [CrossRef] [Google Scholar]
  62. Hung H and Kaveh M. Focussing matrices for coherent signal-subspace processing. IEEE Trans Acoust Speech Signal Process 1988; 36: 1272–81. [CrossRef] [Google Scholar]
  63. di Claudio ED and Parisi R. WAVES: weighted average of signal subspaces for robust wideband direction finding. IEEE Trans Signal Process 2001; 49: 2179–91. [CrossRef] [Google Scholar]
  64. Ng W, Reilly JP and Kirubarajan T, et al. Wideband array signal processing using MCMC methods. IEEE Trans Signal Process 2005; 53: 411–26. [CrossRef] [Google Scholar]
  65. Rajashekar R, Hari K and Hanzo L. Antenna selection in spatial modulation systems. IEEE Commun Lett 2013; 17: 521–4. [CrossRef] [Google Scholar]
  66. Shu F, Wang Z and Chen R et al. Two high-performance schemes of transmit antenna selection for secure spatial modulation. IEEE Trans Veh Technol 2018; 67: 8969–73. [CrossRef] [Google Scholar]
  67. Xia G, Shu F and Zhang Y et al. Antenna selection method of maximizing secrecy rate for green secure spatial modulation. IEEE Trans Green Commun Net 2019; 3: 288–301. [CrossRef] [Google Scholar]
  68. Xia G, Lin Y and Liu T et al. Transmit antenna selection and beamformer design for secure spatial modulation with rough CSI of Eve. IEEE Trans Wirel Commun 2020; 19: 4643–56. [CrossRef] [Google Scholar]
  69. Goel S and Negi R. Guaranteeing secrecy using artificial noise. IEEE Trans Wirel Commun 2008; 7: 2180–9. [CrossRef] [Google Scholar]
  70. Wang L, Bashar S and Wei Y et al. Secrecy enhancement analysis against unknown eavesdropping in spatial modulation. IEEE Commun Lett 2015; 19: 1351–4. [CrossRef] [Google Scholar]
  71. Shu F, Liu X and Xia G et al. High-performance power allocation strategies for secure spatial modulation. IEEE Trans Veh Technol 2019; 68: 5164–8. [CrossRef] [Google Scholar]
  72. Xia G, Jia L and Qian Y et al. Power allocation strategies for secure spatial modulation. IEEE Syst J 2019; 13: 3869–72. [CrossRef] [Google Scholar]
  73. Shu F, Liu L and Yang L et al. Spatial modulation: An attractive secure solution to future wireless network, 2021. https://arxiv.org/abs/2103.04051. [Google Scholar]
  74. Choi J. Full-duplexing jamming attack for active eavesdropping. In: 2016 6th ICITCS, 2016, 1–5. [Google Scholar]
  75. Jiang X, Liu X and Chen R et al. Efficient receive beamformers for secure spatial modulation against a malicious full-duplex attacker with eavesdropping ability. IEEE Trans Veh Technol 2021; 70: 1962–6. [CrossRef] [Google Scholar]
  76. Yu X, Shen JC and Zhang J et al. Alternating minimization algorithms for hybrid precoding in millimeter wave MIMO systems. IEEE J Sel Topics Signal Process 2016; 10: 485–500. [CrossRef] [Google Scholar]
  77. Shu F, Jiang X and Liu X et al. Precoding and transmit antenna subarray selection for secure hybrid spatial modulation. IEEE Trans Wirel Commun 2021; 20: 1903–17. [CrossRef] [Google Scholar]
  78. Xia G, Lin Y and Zhou X et al. Hybrid precoding design for secure generalized spatial modulation with finite-alphabet inputs. IEEE Trans Commun 2021; 69: 2570–84. [CrossRef] [Google Scholar]
  79. Yang P and Qiu X. Hybrid precoding aided secure generalized spatial modulation in millimeter wave MIMO systems. IEEE Commun Lett 2021; 25: 397–401. [CrossRef] [Google Scholar]
  80. Weeks GD, Townsend JK and Freebersyer JA. A method and metric for quantitatively defining low probability of detection. In: Proc. IEEE Military Commun. Conf. (MILCOM), Vol. 3, Dublin, Ireland, Oct. 1998, 821–6. [CrossRef] [Google Scholar]
  81. Bash BA, Goeckel D and Towsley D. Hiding information in noise: Fundamental limits of covert wireless communication. IEEE Commun Mag 2015; 53: 26–31. [CrossRef] [Google Scholar]
  82. Yan S, Zhou X and Hu J et al. Low probability of detection communication: Opportunities and challenges. IEEE Wirel Commun 2019; 26: 19–25. [CrossRef] [Google Scholar]
  83. Bash BA, Goeckel D and Towsley D. Limits of reliable communication with low probability of detection on AWGN channels. IEEE J Sel Areas Commun 2013; 31: 1921–30. [CrossRef] [Google Scholar]
  84. Hu J, Yan S and Shu F et al. Covert transmission with a self-sustained relay. IEEE Trans Wirel Commun 2019; 18: 4089–102. [CrossRef] [Google Scholar]
  85. Gao C, Yang B and Jiang X et al. Covert communication in relay-assisted IoT systems. IEEE Internet Things J 2021; 8: 6313–23. [CrossRef] [Google Scholar]
  86. Sheikholeslami A, Ghaderi M and Towsley D et al. Multi-hop routing in covert wireless networks. IEEE Trans Wirel Commun 2018; 17: 3656–69. [CrossRef] [Google Scholar]
  87. Shahzad K, Zhou X and Yan S et al. Achieving covert wireless communications using a full-duplex receiver. IEEE Trans Wirel Commun 2018; 17: 8517–30. [CrossRef] [Google Scholar]
  88. Hu J, Yan S and Zhou X et al. Covert wireless communications with channel inversion power control in Rayleigh fading. IEEE Trans Veh Technol 2019; 68: 12135–49. [CrossRef] [Google Scholar]
  89. Shu F, Xu T and Hu J et al. Delay-constrained covert communications with a full-duplex receiver. IEEE Wirel Commun Lett 2019; 8: 813–6. [CrossRef] [Google Scholar]
  90. Jiang X, Chen X and Tang J et al. Covert communication in UAV-assisted air-ground networks. IEEE Wirel Commun 2021; 28: 190–7. [CrossRef] [Google Scholar]
  91. Zhou X, Yan S and Hu J et al. Joint optimization of a UAV's trajectory and transmit power for covert communications. IEEE Trans Signal Process 2019; 67: 4276–90. [CrossRef] [Google Scholar]
  92. Wang H-M, Zhang Y and Zhang X et al. Secrecy and covert communications against UAV surveillance via multi-hop networks. IEEE Trans Commun 2020; 68: 389–401. [CrossRef] [Google Scholar]
  93. Hu J, Wu Y and Chen R et al. Optimal detection of UAV's transmission with beam sweeping in covert wireless networks. IEEE Trans Veh Technol 2020; 69: 1080–5. [CrossRef] [Google Scholar]
  94. Cui M, Zhang G and Zhang R. Secure wireless communication via intelligent reflecting surface. IEEE Wirel Commun Lett 2019; 8: 1410–4. [CrossRef] [Google Scholar]
  95. Shen H, Xu W and Gong S et al. Secrecy rate maximization for intelligent reflecting surface assisted multi-antenna communications. IEEE Commun Lett 2019; 23: 1488–92. [CrossRef] [Google Scholar]
  96. Yu X, Xu D and Schober R. Enabling secure wireless communications via intelligent reflecting surfaces. In: Proc. IEEE Global Commun. Conf. (GLOBECOM), Waikoloa, HI, USA, 2019, 1–6. [Google Scholar]
  97. Chen J, Liang Y-C and Pei Y et al. Intelligent reflecting surface: A programmable wireless environment for physical layer security. IEEE Access 2019; 7: 82599–612. [CrossRef] [Google Scholar]
  98. Guan X, Wu Q and Zhang R. Intelligent reflecting surface assisted secrecy communication: Is artificial noise helpful or not? IEEE Wirel Commun Lett 2020; 9: 778–82. [CrossRef] [Google Scholar]
  99. Xu D, Yu X and Sun Y et al. Resource allocation for secure IRS-assisted multiuser MISO systems. In: IEEE Globecom Workshops (GC Wkshps), 2019, 1–6. [Google Scholar]
  100. Shi W, Li J and Xia G et al. Secure multigroup multicast communication systems via intelligent reflecting surface. China Commun 2021; 18: 39–51. [CrossRef] [Google Scholar]
  101. Shi W, Zhou X and Jia L et al. Enhanced secure wireless information and power transfer via intelligent reflecting surface. IEEE Commun Lett 2020; 25: 1084–8. [Google Scholar]
  102. Zhou X, Yan S and Wu Q et al. Intelligent reflecting surface (IRS)-aided covert wireless communications with delay constraint. IEEE Trans Wirel Commun 2022; 21: 532–47. [CrossRef] [Google Scholar]
  103. Dong L, Wang H-M. Secure MIMO transmission via intelligent reflecting surface. IEEE Wirel Commun Lett 2020; 9: 787–90. [CrossRef] [Google Scholar]
  104. Jiang W, Zhang Y and Wu J et al. Intelligent reflecting surface assisted secure wireless communications with multipletransmit and multiple-receive antennas. IEEE Access 2020; 8: 86659–73. [CrossRef] [Google Scholar]
  105. Hong S, Pan C and Ren H et al. Artificial-noise-aided secure MIMO wireless communications via intelligent reflecting surface. IEEE Trans Commun 2020; 68: 7851–66. [CrossRef] [Google Scholar]
  106. Shu F, Teng Y and Li J et al. Enhanced secrecy rate maximization for directional modulation networks via IRS. IEEE Trans Commun 2021; 69: 8388–401. [CrossRef] [Google Scholar]
  107. Hehao N and Ni L. Intelligent reflect surface aided secure transmission in MIMO channel with SWIPT. IEEE Access 2020; 8: 192132–40. [CrossRef] [Google Scholar]
  108. Lu X, Yang W and Guan X et al. Robust and secure beamforming for intelligent reflecting surface aided mmWave MISO systems. IEEE Wirel Commun Lett 2020; 9: 2068–72. [CrossRef] [Google Scholar]
  109. Yu X, Xu D and Sun Y et al. Robust and secure wireless communications via intelligent reflecting surfaces. IEEE J Sel Areas Commun 2020; 38: 2637–52. [CrossRef] [Google Scholar]
  110. Hong S, Pan C and Ren H et al. Robust transmission design for intelligent reflecting surface-aided secure communication systems with imperfect cascaded CSI. IEEE Trans Wirel Commun 2020; 20: 2487–501. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.