Issue
Security and Safety
Volume 5, 2026
Security and Safety in Intelligent Connected Vehicle
Article Number 2025009
Number of page(s) 24
Section Intelligent Transportation
DOI https://doi.org/10.1051/sands/2025009
Published online 23 September 2025
  1. Liu W, Hua M, Deng Z, et al. A systematic survey of control techniques and applications in connected and automated vehicles. IEEE Int. Things J. 2023; 10: 21892–21916. [Google Scholar]
  2. Chen L, Li Y, Huang C, et al. Milestones in autonomous driving and intelligent vehicles: Survey of surveys. IEEE Trans Intell Vehicles 2022; 8: 1046–1056. [Google Scholar]
  3. Li Y, Liu Q, Chen X, et al. Integrated safety and security enhancement of connected automated vehicles using DHR architecture. Security Safety 2023; 2: 2022009. [Google Scholar]
  4. Wu J. Endogenous security problems and countermeasures of intelligent connected vehicle. J Chongqing Univ Posts & Telecommun (Natural Science Edition) 2023; 35: 3. [Google Scholar]
  5. Charlie M and Valasek C. After Jeep Hack, Chrysler Recalls 1.4M Vehicles for Bug Fix. WIRED 2015, www.wired.com/2015/07/jeep-hack-chrysler-recalls-1-4m-vehicles-bug-fix/. [Google Scholar]
  6. Euronews. Gridlock as Hackers Order Hundreds of Taxis to Same Place in Moscow. Euronews 2022, https://www.euronews.com/my-europe/2022/09/02/gridlock-as-hackers-order-hundreds-of-taxis-to-same-place-in-moscow. [Google Scholar]
  7. Financial Times. Hizbollah walkie-talkies explode in Lebanon in second day of blasts. Financial Times 2024, https://www.ft.com/content/defb8bf1-da0b-403a-aa4d-d27a35d54201. [Google Scholar]
  8. Chen S, Wei X, Zhang G, et al. Active and passive safety enhancement for batteries from force perspective. Renewable Sustain Energy Rev 2023; 187:113740. [Google Scholar]
  9. Zhang J, Zhong H, Cui J, et al. Distributed and extensible cross-region vehicle authentication with reputation for vanets. IEEE Trans Intell Transport Syst 2023; 25: 74–89. [Google Scholar]
  10. Chen Y, Zhang J, Wei X, et al. Cross-Domain Authentication Scheme for Vehicles Based on Given Virtual Identities. IEEE Int Things J 2024; 11: 15869–158799. [Google Scholar]
  11. Cui J, Chen Y, Zhong H, et al. Lightweight encryption and authentication for controller area network of autonomous vehicles. IEEE Trans Vehicul Technol 2023; 72: 14756–14770. [Google Scholar]
  12. Baee MAR, Simpson L, Boyen X, et al. A provably secure and efficient cryptographic-key update protocol for connected vehicles. IEEE Trans Dependable Secure Comput 2023; 21: 4066–4083. [Google Scholar]
  13. Plattner M, Sonnleitner E, Ostermayer G. A Security protocol for vehicle platoon verification using optical camera communications. IEEE Tran Intell Transport Syst 2024; 25: 14698–14709. [Google Scholar]
  14. Shen Y, Cui J, Zhong H, et al. A Two-Layer Dynamic ECU Group Management Scheme for In-Vehicle CAN Bus. IEEE Trans Intell Transport Syst 2024; 25: 10431–10445. [Google Scholar]
  15. Liu Q, Li X, Sun K, et al. SISSA: Real-time Monitoring of Hardware Functional Safety and Cybersecurity with In-vehicle SOME/IP Ethernet Traffic. IEEE Int Things J 2024; 11: 27322–27339. [Google Scholar]
  16. Le TD, Truong HBH, Kim D. Multi-classification in-vehicle intrusion detection system using packet-and sequence-level characteristics from time-embedded transformer with autoencoder. Knowledge-Based Syst 2024; 299: 112091. [Google Scholar]
  17. Althunayyan M, Javed A, Rana O. A robust multi-stage intrusion detection system for in-vehicle network security using hierarchical federated learning. Vehicular Commun 2024; 49: 100837. [Google Scholar]
  18. Hoang TN, Kim D. Supervised contrastive ResNet and transfer learning for the in-vehicle intrusion detection system. Expert Syst Appl 2024; 238: 122181. [Google Scholar]
  19. Gong W, Yang S, Guang H, et al. Multi-order feature interaction-aware intrusion detection scheme for ensuring cyber security of intelligent connected vehicles. Eng Appl Artif Intell 2024; 135: 108815. [Google Scholar]
  20. Liu Z, Wan L, Guo J, Huang F, Feng X, Wang L, Ma J. PPRU: A privacy-preserving reputation updating scheme for cloud-assisted vehicular networks. IEEE Trans Vehicular Technol 2023; 74: 1877–1892. [Google Scholar]
  21. Sun H, Huang W, Weng J, et al. CCID-CAN: Cross-chain intrusion detection on CAN bus for autonomous vehicles. IEEE Int Things J 2024; 11: 26146–26159. [Google Scholar]
  22. International Organization for Standardization (ISO). ISO-26262: Road vehicles - Functional safety. Technical report, International Organization for Standardization; 2016. [Google Scholar]
  23. ISO/SAE 21434:Road vehicles, cybersecurity engineering; 2021. [Google Scholar]
  24. Kavallieratos G, Katsikas S, Gkioulos V. Cybersecurity and safety co-engineering of cyberphysical systems-a comprehensive survey. Future Internet 2020; 12: 65. [CrossRef] [Google Scholar]
  25. Cui J, Zhang B. VeRA: A simplified security risk analysis method for autonomous vehicles. IEEE Trans Vehicular Technol 2020; 69: 10494–10505. [Google Scholar]
  26. Möller DPF NIST cybersecurity framework and MITRE cybersecurity criteria. Guide to Cybersecurity in Digital Transformation: Trends, Methods, Technologies, Applications and Best Practices. Cham: Springer Nature Switzerland, 2023; 10494–10505. [Google Scholar]
  27. Ross R, Pillitteri V, Graubart R, et al. Developing cyber-resilient systems: A systems security engineering approach. Special Publication (NIST SP), National Institute of Standards and Technology, Gaithersburg, MD, 2021. https://doi.org/10.6028/NIST.SP.800-160v2r1. [Google Scholar]
  28. National Highway Traffic Safety Administration (NHTSA). Design-in Cyber Resiliency: A System Safety Approach to Vehicle Cybersecurity. Washington, DC: NHTSA, 2023. [Google Scholar]
  29. Checkoway S, McCoy D, Kantor B, et al. Comprehensive experimental analyses of automotive attack surfaces. 20th USENIX security symposium (USENIX Security 11), 2011. [Google Scholar]
  30. Gao B, Liu J, Zou H, et al. Vehicle-Road-Cloud Collaborative Perception Framework and Key Technologies: A Review. IEEE Trans Intell Transport Syst 2024; 25: 19295–19318. [Google Scholar]
  31. Peng G, Tan H, Sun Y. Congestion of Intelligent Driver Model Integrating Fault-Tolerant Control to Boycott Cyber-Attacks in "Vehicle-Road-Cloud" Architecture Under C-V2x Environment. Available at SSRN 4822479, 2025. [Google Scholar]
  32. Jia S, Zhang T, Lin W, et al. An Evaluation Method of Vehicle-Road-Cloud Collaborative System Security Situation Based on (CD) 2-A Elastic Computing Framework. In: 2023 8th International Conference on Data Science in Cyberspace (DSC). IEEE, 2023: 546–550. [Google Scholar]
  33. Liu Q, Sun K, Liu W, et al. Quantitative risk assessment for connected automated Vehicles: Integrating improved STPA-SafeSec and Bayesian networt. Reliabi Eng Syst Safety 2025; 253: 110528. [Google Scholar]
  34. Li Y, Huang C, Liu Q, et al. Integrating security in hazard analysis using STPA-Sec and GSPN: A case study of automatic emergency braking system. Comput Secur 2024; 142: 103890. [Google Scholar]
  35. Auto-ISAC. Automotive cybersecurity best practices-executive summary 2018. [Google Scholar]
  36. Li Y, Liu Q, Zhuang W, et al. Dynamic heterogeneous redundancy-based joint safety and security for connected automated vehicles: Preliminary simulation and field test results. IEEE Vehicular Technol Mag 2023; 18: 89–97. [Google Scholar]
  37. Wang P, Zhai B, Li Y, et al. Endogenous Security Mechanism of Vehicle Network Based on Dynamic Heterogeneous Redundancy. J Electron Inf Technol 2023; 45: 272–281. [Google Scholar]
  38. Wu J. Cyberspace Mimic Defense. Switzerland: Springer, 2020. [Google Scholar]
  39. Ren Q, Hu T, Wu J, et al. C Multipath resilient routing for endogenous secure software defined networks. Comput Net 2021; 194: 108134. [Google Scholar]
  40. Franco J, Aris A, Canberk B, et al. A survey of honeypots and honeynets for internet of things, industrial internet of things, industrial internet of things, and cyber-physical systems. JIEEE Commun Surveys Tutor 2021; 23: 2351–2383. [Google Scholar]
  41. Upstream Security. Global Automotive Cybersecurity Report 2024[R]. Upstream Security, 2024. [Google Scholar]
  42. Vehicle Dynamics International. Vehicle cybersecurity: Control the code, control the road. 2020. [Google Scholar]
  43. National Highway Traffic Safety Administration (NHTSA) Traffic Safety Facts Research Note, Oct. 2019. https://www.nhtsa.gov/traffic-deaths-2018 [Google Scholar]
  44. Wang H, Shao W, Sun C, et al. A survey on an emerging safety challenge for autonomous vehicles: safety of the intended functionality. Engineering 2024; 33: 17–34. [CrossRef] [Google Scholar]
  45. Ren Q, Wu J, He L. Research on mimic DNS architectural strategy based on generalized stochastic petri net. J Cyber Secur 2019; 4: 37–52. [Google Scholar]
  46. Ouyang L. Research on Key Issues of Dynamic Heterogeneous Redundant Microcontroller. Doctoral dissertation, 2023. [Google Scholar]
  47. Ma H, Yi P, Jinag Y, He L. Dynamic heterogeneous redundancy based router architecture with mimic defenses[J]. J Cyber Secur 2017; 2: 29–42. [Google Scholar]
  48. Guo W. Research on Mimic Architecture and Key Technologies of Distributed Storage System. Doctoral dissertation, 2019. [Google Scholar]
  49. Zhu WJ, Guo YB, Huang BH. A mimic defense automaton model of dynamic heterogeneous redundancy structures. Acta Elec tronica Sinica 2019; 47: 2025–2031. [Google Scholar]
  50. Hu J, Yu Li, Li Z, Liu Q, and Wu J. Unveiling the Strategic Defense Mechanisms in Dynamic Heterogeneous Redundancy Architecture. IEEE Trans Network Serv Manage 2024; 24: 4912–4926. [Google Scholar]
  51. Wu T, Hu C, Qingnan C, Anbang C, Qiuhua Z. Defense-enhanced dynamic heterogeneous redundancy architecture based on executor partition. J Commun 2021; 42: 122–134. [Google Scholar]
  52. Wang W, Zeng J, Li G. Security analysis of dynamic heterogeneous redundant system. Comput Eng 2018; 44: 42–45. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.