Issue
Security and Safety
Volume 3, 2024
Security and Safety in Artificial Intelligence
Article Number 2024016
Number of page(s) 12
Section Information Network
DOI https://doi.org/10.1051/sands/2024016
Published online 31 October 2024
  1. Kutz JN, Brunton, SL, Brunton BW, et al. Dynamic Mode Decomposition: Data-Driven Modeling of Complex Systems. Philadelphia, PA, USA: SIAM, 2016. [Google Scholar]
  2. Weng Y, Negi R, Faloutsos C, et al. Robust data-driven state estimation for smart grid. IEEE Trans Smart Grid 2016; 8: 112. [Google Scholar]
  3. Yang C, Jiang Y, Na J, et al. Finitetime convergence adaptive fuzzy control for dual-arm robot with unknown kinematics and dynamics. IEEE Trans Fuzzy Syst 2018; 27: 574–588. [Google Scholar]
  4. Liu CJ, Zhang T, Liu M, et al. Active balance control of humanoid locomotion based on foot position compensation. J. Bionic Eng 2020; 17: 134–147. [CrossRef] [Google Scholar]
  5. Rus D and Tolley MT. Design, fabrication and control of soft robots. Nature 2015; 521: 467–75. [CrossRef] [PubMed] [Google Scholar]
  6. Devi MA, Udupa G and Sreedharan P. A novel under-actuated multi-fingered soft robotic hand for prosthetic application. Robot Auton Syst 2017; 100: 267–277. [Google Scholar]
  7. Feng S, Whitman E and Atkeson CG. Optimization based full body control for the atlas robot. In: Proceedings of 2014 IEEE-RAS International Conference on Humanoid Robots, 2014, 120–127. [Google Scholar]
  8. Huang R, et al. Calibrating parameters of power system stability models using advanced ensemble Kalman filter. IEEE Trans Power Syst 2018; 3: 2895–2905. [CrossRef] [Google Scholar]
  9. Glotfelter P, Jorge C and Egerstedt M. Nonsmooth barrier functions with applications to multi-robot systems. IEEE Control Syst Lett 2017; 1: 310–315. [CrossRef] [Google Scholar]
  10. Romdlony MZ and Jayawardhana B. Robustness analysis of systems’ safety through a new notion of input-to-state safety. Int J Robust Nonlinear Control 2017; 29: 2125–2136. [Google Scholar]
  11. Xiuli Y. Development and technology research of humanoid robot. J Mech Eng 2009; 45: 71–71. [Google Scholar]
  12. Dong W, Cheng X, Xiong T, et al. Stretchable bio-potential electrode with self-similar serpentine structure for continuous, long-term, stable ECG recordings. Biomed Microdevices 2019; 21: 6. [CrossRef] [PubMed] [Google Scholar]
  13. Dai HK and Tedrake R. L2-gain optimization for robust bipedal walking on unknown terrain. In: Proceeding of IEEE International Conference on Robotics and Automation, 2013, 3116–3123. [Google Scholar]
  14. Heydarnia O, Dadashzadeh B, Allahverdizadeh A, et al. Discrete sliding mode control to stabilize running of a biped robot with compliant kneed legs. Autom Control Comput Sci 2017; 51: 347–356. [CrossRef] [Google Scholar]
  15. Bajcsy A, Bansal S and Bronstein E. An efficient reachability-based framework for provably safe autonomous navigation in unknown environments. In: IEEE Conference Decision Control (CDC), IEEE, 2019, 1758–1765. [Google Scholar]
  16. Almubarak H, Sadegh N and Theodorou EA. Barrier states theory for safety-critical multi-objective control. arXiv preprint https://arxiv.org/abs/2310.07022, 2023. [Google Scholar]
  17. Cho M, Lee Y and Kim KS. Model predictive control of autonomous vehicles with integrated barriers using occupancy grid Maps. IEEE Robot Autom Lett 2023; 8: 2006–2013. [CrossRef] [Google Scholar]
  18. Devi MA, Udupa G and Sreedharan P. A novel under-actuated multi-fingered soft robotic hand for prosthetic application. Robot Auton Syst 2017; 100: 267–277. [Google Scholar]
  19. Tu JH, Rowley CW and Luchtenburg DM. On dynamic mode decomposition: Theory and applications. J Comput Dyn 2014; 2: 391–421. [CrossRef] [Google Scholar]
  20. Ibanez A, Bidaud P and Padois V. Automatic optimal biped walking as a mixed-integer quadratic program. Adv Robot Kinemat 2014; 505–516. [CrossRef] [Google Scholar]
  21. Park HW, Ramezani A and Grizzle JW. A finite-state machine for accommodating unexpected large ground-height variations in bipedal robot walking. IEEE Trans Robot 2013; 29: 331–345. [CrossRef] [Google Scholar]
  22. Taylor AJ, Ong P, Cortes J, et al. Safety-critical event triggered control via input-to-state safe barrier functions. IEEE Control Syst Lett 2021; 5: 1916–1921. [CrossRef] [Google Scholar]
  23. Ugurlu B, Saglia JA, Tsagarakis NG, et al. Hopping at the resonance frequency: A trajectory generation technique for bipedal robots with elastic joints. In: Proceedings of IEEE International Conference on Robotics and Automation, 2012, 1436–1443. [Google Scholar]
  24. Savin S, et al. ZMP-based trajectory generation for bipedal robots using quadratic programming. In: Control and Signal Processing Applications for Mobile and Aerial Robotic Systems, 2020, 266–285. [Google Scholar]
  25. Lamperski A and Ames AD. Lyapunov theory for zeno stability. IEEE Trans Autom Control 2013; 58: 100–112. [CrossRef] [Google Scholar]
  26. Sun S, Huang Y and Wang Q. Adding adaptable toe stiffness affects energetic efficiency and dynamic behaviors of bipedal walking. J Theor Biol 2016; 388: 108–118. [CrossRef] [PubMed] [Google Scholar]
  27. Su H, Qi W, Hu Y, et al. An incremental learning framework for human-like redundancy optimization of anthropomorphic manipulators. IEEE Trans Ind Inf 2020; 18: 1864–1872. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.