Issue
Security and Safety
Volume 3, 2024
Security and Privacy for Space-Air-Ground Integrated Networks
Article Number 2023030
Number of page(s) 19
Section Information Network
DOI https://doi.org/10.1051/sands/2023030
Published online 31 January 2024
  1. Chen SZ, Sun SH and Kang SL. System integration of terrestrial mobile communication and satellite communication-the trends, challenges and key technologies in B5G and 6G. China Commun 2020; 17: 156–171 [CrossRef] [Google Scholar]
  2. Lin M, Huang QQ and Cola TD et al. Integrated 5G-satellite networks: A perspective on physical layer reliability and security. IEEE Wirel Commun 2020; 27: 152–159. [CrossRef] [Google Scholar]
  3. Hubenko VP, Raines RA and Mills RF et al. Improving the global information grid’s performance through satellite communications layer enhancements. IEEE Commun. Magazine 2006; 44: 66–72 [CrossRef] [Google Scholar]
  4. Khawaja W, Guvenc I and Matolak DW et al. A survey of air-to-ground propagation channel modeling for unmanned aerial vehicles. IEEE Commun. Surv. Tutorials 2019; 21: 2361–2391 [CrossRef] [Google Scholar]
  5. Zhang W, Li LZ and Zhang N et al. Air-ground integrated mobile edge networks: A survey. IEEE Access 2020; 8: 125998–126018 [CrossRef] [Google Scholar]
  6. Liu JJ, Shi YP and Fadlullah ZM et al. Space-air-ground integrated network: A survey. IEEE Commun Surv Tutorials 2018; 20: 2714–2741 [CrossRef] [Google Scholar]
  7. Zhao XW, Zhang Y and Qin P et al. Key technologies and development trends for a Space-Air-Ground integrated wireless optical communication network. Acta Electron Sin 2022; 50: 1–17 [Google Scholar]
  8. Wang P, Zhang J and Zhang X et al. Convergence of satellite and terrestrial networks: A comprehensive survey. IEEE Access 2019; 8: 5550–5588 [Google Scholar]
  9. He DJ, Li XR and Chan S et al. Security analysis of a space-based wireless network. IEEE Network 2019; 33: 36–43 [Google Scholar]
  10. Saeed N, Almorad H and Dahrouj H et al. Point-to-point communication in integrated satellite-aerial 6G networks: State-of-the-art and future challenges. IEEE Open J Commun Soc 2021; 2: 1505–1525 [CrossRef] [Google Scholar]
  11. Zhang N, Zhang S and Yang P et al. Software defined space-air-ground integrated vehicular networks: Challenges and solutions. IEEE Commun Mag 2017; 55: 101–109 [CrossRef] [Google Scholar]
  12. Semal B, Markantonakis K and Akram RN. A certificateless group authenticated key agreement protocol for secure communication in untrusted UAV networks. In: Proceedings of 2018 IEEE/AIAA 37th Digital Avionics Systems Conference (DASC) London, UK: IEEE, 2018: 1–8 [Google Scholar]
  13. Srinivas J, Das AK and Kumar N et al. TCALAS: Temporal credential-based anonymous lightweight authentication scheme for Internet of drones environment. IEEE Trans Veh Technol 2019; 68: 6903–6916 [CrossRef] [Google Scholar]
  14. Ali Z, Chaudhry SA and Ramzan MS et al. Securing smart city surveillance: A lightweight authentication mechanism for unmanned vehicles. IEEE Access 2020; 8: 43711–43724 [CrossRef] [Google Scholar]
  15. Alladi T, Bansal G and Chamola V et al. SecAuthUAV: A novel authentication scheme for UAV-ground station and UAV-UAV communication. IEEE Trans Veh. Technol 2020; 69: 15068–15077 [CrossRef] [Google Scholar]
  16. Alladi T, Chamola V and Kumar N. PARTH: A two-stage lightweight mutual authentication protocol for UAV surveillance networks. Comput. Commun 2020; 160: 81–90 [CrossRef] [Google Scholar]
  17. Lei Y, Zeng L and Li YX et al. A lightweight authentication protocol for UAV networks based on security and computational resource optimization. IEEE Access 2021; 9: 53769–53785 [CrossRef] [Google Scholar]
  18. Melo CFE, e Silva TD and Boeira F et al. Uavouch: A secure identity and location validation scheme for uav-networks. IEEE Access 2021; 9: 82930–82946 [CrossRef] [Google Scholar]
  19. Yazdinejad A, Parizi RM and Dehghantanha A et al. Enabling drones in the internet of things with decentralized blockchain-based security. IEEE Internet Things J 2020; 8: 6406–6415 [Google Scholar]
  20. Chen A, Peng K and Sha Z et al. ToAM: A task-oriented authentication model for UAVs based on blockchain. EURASIP J Wirel Commun Networking 2021; 1–15 [Google Scholar]
  21. Zhang L. Cryptanalysis of the public key encryption based on multiple chaotic systems. Chaos Solitons Fractals 2008; 37: 669–674 [CrossRef] [Google Scholar]
  22. Kocarev L and Tasev Z, Public-key encryption based on Chebyshev maps. Int Symp Circuits Syst 2003 [Google Scholar]
  23. Maze G. Algebraic Methods for Constructing One-way Trapdoor Functions University of Notre Dame 2003 [Google Scholar]
  24. Mishkovski I and Kocarev L, Chaos-based public-key cryptography. Chaos-Based Cryptography: Theory, Algorithms and Applications Berlin: Springer; 2011. [Google Scholar]
  25. Abbasinezhad-Mood D and Nikooghadam M, Efficient anonymous password-authenticated key exchange protocol to read isolated smart meters by utilization of extended Chebyshev chaotic maps. IEEE Trans Ind Inf 2018; 14: 4815–4828 [Google Scholar]
  26. Zhang L, Zhu Y and Ren W et al. An energy-efficient authentication scheme based on chebyshev chaotic map for smart grid environments. IEEE Internet Things J 2021; 8: 17120–17130 [CrossRef] [Google Scholar]
  27. Dolev D and Yao AC. On the security of public key protocols. IEEE Trans Inf Theor 1983; 29: 198–208 [CrossRef] [Google Scholar]
  28. Cremers C. Scyther: semantics and Verification of Security Protocols Netherlands: Eindhoven university of Technology, 2006. [Google Scholar]
  29. Ying BD and Nayak A. Anonymous and lightweight authentication for secure vehicular networks. IEEE Trans Veh Technol 2017; 66: 10626–10636 [CrossRef] [Google Scholar]
  30. Chen CL, Deng YY and Weng W et al. A traceable and privacy-preserving authentication for UAV communication control system. Electronics 2020; 9: 62 [CrossRef] [Google Scholar]
  31. Bagga P, Das AK and Wazid M et al. On the design of mutual authentication and key agreement protocol in internet of vehicles-enabled intelligent transportation system. IEEE Trans Veh Technol 2021; 70: 1736–1751 [CrossRef] [Google Scholar]
  32. Elaine B. National Institute of Standards and Technology Special Publication 800–57 Part 1: Recommendation for Key Management: Part 1 – General The United States: National Institute of Standards and Technology, 2018. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.