Issue
Security and Safety
Volume 3, 2024
Security and Safety in Physical Layer Systems
Article Number 2023022
Number of page(s) 32
Section Information Network
DOI https://doi.org/10.1051/sands/2023022
Published online 18 September 2023
  1. Zhang JQ, Li GY and Marshall A et al. A new frontier for IoT security emerging from three decades of key generation relying on wireless channels. IEEE Access 2020; 8: 138406–46. [CrossRef] [Google Scholar]
  2. Pan JL and McElhannon J. Future edge cloud and edge computing for Internet of Things applications. IEEE Internet Things J 2018; 5: 439–49. [CrossRef] [Google Scholar]
  3. Statista. Number of IoT connected devices worldwide 2019–2021, with forecasts to 2030. https://www.statista.com/statistics/1183457/iot-connected-devices-worldwide/ (accessed on 10 September 2022). [Google Scholar]
  4. Zielonka A, Sikora A and Wozniak M et al. Intelligent Internet of Things system for smart home optimal convection. IEEE Trans Ind Inform 2021; 17: 4308–17. [CrossRef] [Google Scholar]
  5. Qadri YA, Nauman A and Bin Zikria Y et al. The future of healthcare Internet of Things: a survey of emerging technologies. IEEE Commun Surv Tutor 2020; 22: 1121–67. [CrossRef] [Google Scholar]
  6. Song YX, Yu FR and Zhou L et al. Applications of the Internet of Things (IoT) in smart logistics: a comprehensive survey. IEEE Internet Things J 2021; 8: 4250–74. [CrossRef] [Google Scholar]
  7. Houda ZAE, Brik B and Ksentini A et al. When federated learning meets game theory: a cooperative framework to secure IIoT applications on edge computing. IEEE Trans Ind Inf 2022; 18: 7988–97. [CrossRef] [Google Scholar]
  8. Abdel-Basset M, Moustafa N and Hawash H et al. Federated intrusion detection in blockchain-based smart transportation systems. IEEE Trans Intell Transp Syst 2022; 23: 2523–37. [CrossRef] [Google Scholar]
  9. Gharaibeh A, Salahuddin MA and Hussini SJ et al. Smart cities: a survey on data management, security, and enabling technologies. IEEE Commun Surv Tutor 2017; 19: 2456–501. [CrossRef] [Google Scholar]
  10. Lichtman M, Rao R and Marojevic V et al. 5G NR jamming, spoofing, and sniffing: threat assessment and mitigation. In: 2018 IEEE International Conference on Communications Workshops (ICC Workshops). IEEE, Kansas City, MO, USA May 2018, 1–6. [Google Scholar]
  11. SWAN white paper – Radio frequency vulnerabilities. https://cpb-eu-w2.wpmucdn.com/blogs.bristol.ac.uk/dist/6/635/files/2021/05/SWANWH2.pdf (accessed on 8 March 2023). [Google Scholar]
  12. Li W, Wang J and Li L et al. Countermeasure for smart jamming threat: a deceptively adversarial attack approach. In: ICC 2021-IEEE International Conference on Communications. IEEE, Canada, June 2021, doi: 10.1109/ICC42927.2021.9500773. [Google Scholar]
  13. Hall J, Barbeau M and Kranakis E. Detection of transient in radio frequency fingerprinting using signal phase. Wireless Opt Commun 2003; 9: 13–8. [Google Scholar]
  14. Scheirer W, Jain LP and Boult TE. Probability models for open set recognition. IEEE Trans Pattern Anal Mach Intell 2014; 36: 2317–24. [CrossRef] [PubMed] [Google Scholar]
  15. Geng C, Huang SJ and Chen S. Recent advances in open set recognition: a survey. IEEE Trans Pattern Anal Mach Intell 2021; 43: 3614–31. [CrossRef] [PubMed] [Google Scholar]
  16. Patel HJ, Temple MA and Baldwin RO. Improving ZigBee device network authentication using ensemble decision tree classifiers with radio frequency distinct native attribute fingerprinting. IEEE Trans Reliab 2015; 64: 221–33. [CrossRef] [Google Scholar]
  17. Shen GX, Zhang JQ and Marshall A et al. Radio frequency fingerprint identification for LoRa using spectrogram and CNN. In: IEEE INFOCOM 2021 – IEEE Conference on Computer Communications. IEEE, Vancouver, BC, Canada, May 2021, 1–10. [Google Scholar]
  18. Andrews SD. Extensions to radio frequency fingerprinting. Ph.D. Dissertation, Virginia Tech, 2019. [Google Scholar]
  19. Cekic M, Gopalakrishnan S and Madhow U. Wireless fingerprinting via deep learning: the impact of confounding factors. In: 2021 55th Asilomar Conference on Signals, Systems, and Computers. IEEE, Pacific Grove, CA, USA, November 2021, 677–84. [CrossRef] [Google Scholar]
  20. Yin PC, Peng LN and Zhang JQ et al. LTE device identification based on RF fingerprint with multi-channel convolutional neural network. In: 2021 IEEE Global Communications Conference (GLOBECOM). IEEE, Madrid, Spain, December 2021, 1–6. [Google Scholar]
  21. Merchant K, Revay S and Stantchev G et al. Deep learning for RF device fingerprinting in cognitive communication networks. IEEE J Sel Top Signal Process 2018; 12: 160–7. [CrossRef] [Google Scholar]
  22. Qiu YJ, Peng LN and Zhang JQ et al. Signal-independent RFF identification for LTE mobile devices via ensemble deep learning. In: GLOBECOM 2022 – 2022 IEEE Global Communications Conference. IEEE, Rio de Janeiro, Brazil, December 2022;37–42. [CrossRef] [Google Scholar]
  23. Xie RJ, Xu W and Chen YZ et al. A generalizable model-and-data driven approach for open-set RFF authentication. IEEE Trans Inf Forensic Secur 2021; 16: 4435–50. [CrossRef] [Google Scholar]
  24. Shen GX, Zhang JQ and Marshall A et al. Towards scalable and channel-robust radio frequency fingerprint identification for LoRa. IEEE Trans Inf Forensic Secur 2022; 17: 774–87. [CrossRef] [Google Scholar]
  25. Sourour E, El-Ghoroury H and McNeill D et al. Frequency offset estimation and correction in the IEEE 802.11a WLAN. In: IEEE 60th Vehicular Technology Conference, 2004. VTC2004-Fall. IEEE, Los Angeles, CA, USA, September 2004;4923–7. [CrossRef] [Google Scholar]
  26. Shen GX, Zhang JQ and Marshall A et al. Radio frequency fingerprint identification for LoRa using deep learning. IEEE J Sel Areas Commun 2021; 39: 2604–16. [CrossRef] [Google Scholar]
  27. Peng LN, Hu AQ and Zhang JQ et al. Design of a hybrid RF fingerprint extraction and device classification scheme. IEEE Internet Things J 2019; 6: 349–60. [CrossRef] [Google Scholar]
  28. Xie FY, Wen H and Li YS et al. Optimized coherent integration-based radio frequency fingerprinting in Internet of Things. IEEE Internet Things J 2018; 5: 3967–77. [CrossRef] [Google Scholar]
  29. Xing YX, Hu AQ and Zhang JQ et al. On radio frequency fingerprint identification for DSSS systems in low SNR scenarios. IEEE Commun Lett 2018; 22: 2326–9. [CrossRef] [Google Scholar]
  30. Wang WD and Gan L. Radio frequency fingerprinting improved by statistical noise reduction. IEEE Trans Cogn Commun Netw 2022; 8: 1444–52. [CrossRef] [Google Scholar]
  31. Yu JB, Hu AQ and Zhou F et al. Radio frequency fingerprint identification based on denoising Autoencoders. In: 2019 International Conference on Wireless and Mobile Computing, Networking and Communications (WiMob). IEEE, Barcelona, Spain, October 2019, 1–6. [Google Scholar]
  32. Diedrich A, Charoensuk W and Brychta RJ et al. Analysis of raw microneurographic recordings based on wavelet de-noising technique and classification algorithm: wavelet analysis in microneurography. IEEE Trans Biomed Eng 2003; 50: 41–50. [CrossRef] [PubMed] [Google Scholar]
  33. Johnstone IM and Silverman BW. Wavelet threshold estimators for data with correlated noise. J R Stat Soc Ser B-Stat Methodol 1997; 59: 319–51. [CrossRef] [Google Scholar]
  34. Al-Shawabka A, Restuccia F and D’Oro S et al. Exposing the fingerprint: dissecting the impact of the wireless channel on radio fingerprinting. In: IEEE INFOCOM 2020 – IEEE Conference on Computer Communications. IEEE, Toronto, ON, Canada, July 2020, 646–55. [CrossRef] [Google Scholar]
  35. Ding TY, Peng LN and Qiu YJ et al. A research of I/Q imbalance based RF fingerprint identification with LTE-RACH signals. In: 2021 IEEE 6th International Conference on Signal and Image Processing (ICSIP). IEEE, Xi’an, China, April 2021, 66–71. [CrossRef] [Google Scholar]
  36. Zheng TH, Sun Z and Ren K. FID: function modeling-based data-independent and channel-robust physical-layer identification. In: Proc IEEE INFOCOM. Paris, France, April 2019, 199–207. [Google Scholar]
  37. Restuccia F, D’Oro S and Al-Shawabka A et al. DeepRadioID: real-time channel-resilient optimization of deep learning-based radio fingerprinting algorithms. In: Proceedings of the Twentieth ACM International Symposium on Mobile Ad Hoc Networking and Computing. ACM, Catania, Italy, July 2019, 51–60. [CrossRef] [Google Scholar]
  38. Xing YX, Hu AQ and Zhang JQ et al. Design of a channel robust radio frequency fingerprint identification scheme. IEEE Internet Things J 2022; 10: 6946–59. [Google Scholar]
  39. Wang D, Hu AQ and Wang Y. Radio frequency fingerprint estimation in multi-path transmission environment. J Cryptol Res 2020; 7: 249–60. [Google Scholar]
  40. Rajendran S and Sun Z. RF impairment model-based IoT physical-layer identification for enhanced domain generalization. IEEE Trans Inf Forensic Secur 2022; 17: 1285–99. [CrossRef] [Google Scholar]
  41. Hall J, Barbeau M and Kranakis E. Detecting rogue devices in bluetooth networks using radio frequency fingerprinting. In: Proceedings of the 3rd IASTED International Conference on Communications and Computer Networks, Lima, Peru, 2006, 108–13. [Google Scholar]
  42. Klein RW, Temple MA and Mendenhall MJ. Application of wavelet-based RF fingerprinting to enhance wireless network security. J Commun Netw 2009; 11: 544–55. [CrossRef] [Google Scholar]
  43. Yuan HL and Hu AQ. Preamble-based detection of Wi-Fi transmitter RF fingerprints. Electron Lett 2010; 46: 1165–6. [CrossRef] [Google Scholar]
  44. Lin Y, Zhu XL and Zheng ZG et al. The individual identification method of wireless device based on dimensionality reduction and machine learning. J Supercomput 2019; 75: 3010–27. [CrossRef] [Google Scholar]
  45. Danev B and Capkun S. Transient-based identification of wireless sensor nodes. In: 2009 International Conference on Information Processing in Sensor Networks. IEEE, San Francisco, CA, USA, April 2009, 25–36. [Google Scholar]
  46. Dubendorfer CK, Ramsey BW and Temple MA. An RF-DNA verification process for ZigBee networks. In: MILCOM 2012–2012 IEEE Military Communications Conference. IEEE, Orlando, FL, USA, November 2012, 1–6. [Google Scholar]
  47. Wheeler CG and Reising DR. Assessment of the impact of CFO on RF-DNA fingerprint classification performance. In: 2017 International Conference on Computing, Networking and Communications (ICNC). IEEE, Silicon Valley, CA, USA, January 2017, 110–4. [CrossRef] [Google Scholar]
  48. Talbot CM, Temple MA and Carbino TJ et al. Detecting rogue attacks on commercial wireless Insteon home automation systems. Comput Secur 2018; 74: 296–307. [CrossRef] [Google Scholar]
  49. Reising D, Cancelleri J and Loveless TD et al. Radio identity verification-based IoT security using RF-DNA fingerprints and SVM. IEEE Internet Things J 2021; 8: 8356–71. [CrossRef] [Google Scholar]
  50. Wong LJ, Headley WC and Andrews S et al. Clustering learned CNN features from raw I/Q data for emitter identification. In: MILCOM 2018–2018 IEEE Military Communications Conference (MILCOM). IEEE, Los Angeles, CA, USA, July 2018, 26–33. [CrossRef] [Google Scholar]
  51. Reus-Muns G, Jaisinghani D and Sankhe K et al. Trust in 5G open RANs through machine learning: RF fingerprinting on the POWDER PAWR platform. In: GLOBECOM 2020–2020 IEEE Global Communications Conference. IEEE, Taipei, Taiwan, December 2020, 1–6. [Google Scholar]
  52. Sankhe K, Belgiovine M and Zhou F et al. No radio left behind: radio fingerprinting through deep learning of physical-layer hardware impairments. IEEE Trans Cogn Commun Netw 2020; 6: 165–78. [CrossRef] [Google Scholar]
  53. McGinthy JM, Wong LJ and Michaels AJ. Groundwork for neural network-based specific emitter identification authentication for IoT. IEEE Internet Things J 2019; 6: 6429–40. [CrossRef] [Google Scholar]
  54. Brik V, Banerjee S and Gruteser M et al. Wireless device identification with radiometric signatures. In: Proceedings of the 14th ACM International Conference on Mobile Computing and Networking. ACM, San Francisco, CA, USA, September 2008, 116–27. [CrossRef] [Google Scholar]
  55. Vo-Huu TD, Vo-Huu TD and Noubir G. Fingerprinting Wi-Fi devices using software defined radios. In: Proceedings of the 9th ACM Conference on Security & Privacy in Wireless and Mobile Networks. ACM, Darmstadt, Germany, July 2016, 3–13. [CrossRef] [Google Scholar]
  56. Nguyen NT, Zheng GB and Han Z et al. Device fingerprinting to enhance wireless security using nonparametric Bayesian method. In: 2011 Proceedings IEEE INFOCOM. IEEE, Shanghai, China, April 2011, 1404–12. [CrossRef] [Google Scholar]
  57. Rahbari H, Krunz M and Lazos L. Security vulnerability and countermeasures of frequency offset correction in 802.11a systems. In: IEEE INFOCOM 2014-IEEE Conference on Computer Communications. IEEE, Toronto, ON, Canada, April 2014, 1015–23. [CrossRef] [Google Scholar]
  58. Agadakos I, Agadakos N and Polakis J et al. Chameleons’ oblivion: complex-valued deep neural networks for protocolagnostic RF device fingerprinting. In: 2020 IEEE European Symposium on Security and Privacy (EuroS&P). IEEE, Genoa, Italy, September 2020, 322–38. [CrossRef] [Google Scholar]
  59. Liu MQ, Wang JK and Zhao N et al. Radio frequency fingerprint collaborative intelligent identification using incremental learning. IEEE Trans Netw Sci Eng 2022; 9: 3222–33. [CrossRef] [Google Scholar]
  60. Xie CX, Zhang LM and Zhong ZG. Meta learning-based open-set identification system for specific emitter identification in non-cooperative scenarios. KSII Trans Internet Inf Syst 2022; 16: 1755–77. [Google Scholar]
  61. Lv YY, Liu YN and Liu F et al. Automatic modulation recognition of digital signals using CWT based on optimal scales. In: 2014 IEEE International Conference on Computer and Information Technology. IEEE, Xi’an, Shaanxi, China, September 2014, 430–4. [CrossRef] [Google Scholar]
  62. Zhang JW, Wang FG and Dobre OA et al. Specific emitter identification via Hilbert-Huang transform in single-hop and relaying scenarios. IEEE Trans Inf Forensic Secur 2016; 11: 1192–205. [CrossRef] [Google Scholar]
  63. Peng LN, Hu AQ and Jiang Y et al. A differential constellation trace figure based device identification method for ZigBee nodes. In: 2016 8th International Conference on Wireless Communications & Signal Processing (WCSP). IEEE, Yangzhou, China, October 2016, 1–6. [Google Scholar]
  64. Peng LN, Zhang JQ and Liu M et al. Deep learning based RF fingerprint identification using differential constellation trace figure. IEEE Trans Veh Technol 2020; 69: 1091–5. [CrossRef] [Google Scholar]
  65. Peng Y, Liu PF and Wang Y et al. Radio frequency fingerprint identification based on slice integration cooperation and heat constellation trace figure. IEEE Wirel Commun Lett 2022; 11: 543–7. [CrossRef] [Google Scholar]
  66. Ray P, Reddy SS and Banerjee T. Various dimension reduction techniques for high dimensional data analysis: a review. Artif Intell Rev 2021; 54: 3473–515. [CrossRef] [Google Scholar]
  67. Bihl TJ, Bauer KW and Temple MA. Feature selection for RF fingerprinting with multiple discriminant analysis and using ZigBee device emissions. IEEE Trans Inf Forensic Secur 2016; 11: 1862–74. [CrossRef] [Google Scholar]
  68. Dubendorfer C, Ramsey B and Temple MA, ZigBee device verification for securing industrial control and building automation systems. In: Critical Infrastructure Protection VII: 7th IFIP WG 11.10 International Conference, ICCIP 2013, Washington, DC, USA, March 18–20, 2013, Revised Selected Papers 7. Springer Berlin Heidelberg, 2013, 47–62. [Google Scholar]
  69. Gedik N. A new feature extraction method based on multi-resolution representations of mammograms. Appl Soft Comput 2016; 44: 128–33. [CrossRef] [Google Scholar]
  70. Tian Q, Lin Y and Guo XH et al. New security mechanisms of high-reliability IoT communication based on radio frequency fingerprint. IEEE Internet Things J 2019; 6: 7980–7. [CrossRef] [Google Scholar]
  71. Ureten O and Serinken N. Wireless security through RF fingerprinting. Can J Electr Comp Eng-Rev Can Genie Electr Inf 2007; 32: 27–33. [CrossRef] [Google Scholar]
  72. Leonardi M and Gerardi F. Aircraft mode S transponder fingerprinting for intrusion detection. Aerospace 2020; 7: 30. [CrossRef] [Google Scholar]
  73. Bassey J, Adesina D and Li XF et al. Intrusion detection for IoT devices based on RF fingerprinting using deep learning. In: 2019 Fourth International Conference on Fog and Mobile Edge Computing (FMEC). IEEE, Rome, Italy, June 2019, 98–104. [CrossRef] [Google Scholar]
  74. Cobb WE, Laspe ED and Baldwin RO et al. Intrinsic physical-layer authentication of integrated circuits. IEEE Trans Inf Forensic Secur 2012; 7: 14–24. [CrossRef] [Google Scholar]
  75. Huang GQ, Yuan YJ and Wang X et al. Specific emitter identification for communications transmitter using multimeasurements. Wirel Pers Commun 2017; 94: 1523–42. [Google Scholar]
  76. Paul AJ, Collins PJ and Temple MA. Enhancing microwave system health assessment using artificial neural networks. IEEE Antennas Wirel Propag Lett 2019; 18: 2230–4. [CrossRef] [Google Scholar]
  77. Gritsenko A, Wang ZF and Jian T et al. Finding a “new” needle in the haystack: unseen radio detection in large populations using deep learning. In: 2019 IEEE International Symposium on Dynamic Spectrum Access Networks (DySPAN). IEEE, Newark, NJ, USA, November 2019, 430–9. [Google Scholar]
  78. He BF and Wang FG. Cooperative specific emitter identification via multiple distorted receivers. IEEE Trans Inf Forensic Secur 2020; 15: 3791–806. [CrossRef] [Google Scholar]
  79. Yu JB, Hu AQ and Li GY et al. A robust RF fingerprinting approach using multisampling convolutional neural network. IEEE Internet Things J 2019; 6: 6786–99. [CrossRef] [Google Scholar]
  80. Wu WW, Hu S and Lin D et al. DSLN: securing internet of things through RF fingerprint recognition in low-SNR settings. IEEE Internet Things J 2022; 9: 3838–49. [CrossRef] [Google Scholar]
  81. Zhang TT, Ren PY and Ren ZY et al. FWSResNet: an edge device fingerprinting framework based on scattering and convolutional networks. In: 2022 IEEE 95th Vehicular Technology Conference (VTC2022-Spring). IEEE, Helsinki, Finland, June 2022, 1–6. [Google Scholar]
  82. Monga V, Li YL and Eldar YC. Algorithm unrolling: interpretable, efficient deep learning for signal and image processing. IEEE Signal Process Mag 2021; 38: 18–44. [CrossRef] [Google Scholar]
  83. Al-Shawabka A, Pietraski P and Pattar SB et al. DeepLoRa: fingerprinting LoRa devices at scale through deep learning and data augmentation. In: Proceedings of the Twenty-second International Symposium on Theory, Algorithmic Foundations, and Protocol Design for Mobile Networks and Mobile Computing. ACM, Shanghai, China, July 2021, 251–60. [CrossRef] [Google Scholar]
  84. Robinson J, Kuzdeba S and Stankowicz J et al. Dilated causal convolutional model for RF fingerprinting. In: 2020 10th Annual Computing and Communication Workshop and Conference (CCWC). IEEE, Las Vegas, NV, USA, January 2021, 157–62. [Google Scholar]
  85. Soltani N, Sankhe K and Dy J et al. More is better: data augmentation for channel-resilient RF fingerprinting. IEEE Commun Mag 2020; 58: 66–72. [CrossRef] [Google Scholar]
  86. Defense Advanced Research Projects Agency (DARPA). Radio Frequency Machine Learning Systems (RFMLS). https://www.darpa.mil/program/radio-frequency-machine-learning-systems (accessed on 15 January 2023). [Google Scholar]
  87. Chouchane A, Rekhis S and Boudriga N. Defending against rogue base station attacks using wavelet based fingerprinting. In: 2009 IEEE/ACS International Conference on Computer Systems and Applications. IEEE, Rabat, Morocco, May 2009, 523–30. [CrossRef] [Google Scholar]
  88. Rekhis S, Chouchane A and Boudriga N. Detection and reaction against DDoS attacks in cellular networks. In: 2008 3rd International Conference on Information and Communication Technologies: From Theory to Applications. IEEE, Damascus, Syria, April 2008, 2520–5. [Google Scholar]
  89. Rondeau CM, Betances JA and Temple MA. Securing ZigBee commercial communications using constellation based distinct native attribute fingerprinting. Secur Commun Netw 2018; 1489347. [Google Scholar]
  90. Rondeau CM, Temple MA and Betances JA et al. Extending critical infrastructure element longevity using constellation-based ID verification. Comput Secur 2021; 100: 102073. [CrossRef] [Google Scholar]
  91. Wang N, Li WW and Jiao L et al. Orientation and channel-independent RF fingerprinting for 5G IEEE 802.11ad devices. IEEE Internet Things J 2022; 9: 9036–48. [CrossRef] [Google Scholar]
  92. Tian Q, Lin Y and Guo X et al. An identity authentication method of a MIoT device based on radio frequency (RF) fingerprint technology. Sensors 2020; 20: 1213. [CrossRef] [PubMed] [Google Scholar]
  93. Patel H, Temple MA and Ramsey BW. Comparison of high-end and low-end receivers for RF-DNA fingerprinting. In: 2014 IEEE Military Communications Conference. IEEE, Baltimore, MD, USA, October 2014, 24–29. [CrossRef] [Google Scholar]
  94. Reising DR and Temple MA. WiMAX mobile subscriber verification using Gabor-based RF-DNA fingerprints. In: 2012 IEEE International Conference on Communications (ICC). IEEE, Ottawa, Canada, June 2012, 1005–10. [CrossRef] [Google Scholar]
  95. Kokalj-Filipovic S, Toliver P and Johnson W et al. Reservoir-based distributed machine learning for edge operation of emitter identification. In: MILCOM 2021–2021 IEEE Military Communications Conference (MILCOM). IEEE, San Diego, CA, USA, November 2021, 96–101. [Google Scholar]
  96. Medaiyese OO, Ezuma M and Lauf AP et al. Semi-supervised learning framework for UAV detection. In: 2021 IEEE 32nd Annual International Symposium on Personal, Indoor and Mobile Radio Communications (PIMRC). IEEE, Helsinki, Finland, September 2021, 1185–90. [CrossRef] [Google Scholar]
  97. Zhou XY, Hu AQ and Li GY et al. A robust radio-frequency fingerprint extraction scheme for practical device recognition. IEEE Internet Things J 2021; 8: 11276–89. [CrossRef] [Google Scholar]
  98. Liu YX, Wang J and Li JQ et al. Machine learning for the detection and identification of Internet of Things devices: A survey. IEEE Internet Things J 2022; 9: 298–320. [CrossRef] [Google Scholar]
  99. Hanna S, Karunaratne S and Cabric D. Deep learning approaches for open set wireless transmitter authorization. In: 2020 IEEE 21st International Workshop on Signal Processing Advances in Wireless Communications (SPAWC). IEEE, Atlanta, GA, USA, May 2020, 1–5. [Google Scholar]
  100. Hanna S, Karunaratne S and Cabric D. Open set wireless transmitter authorization: deep learning approaches and dataset considerations. IEEE Trans Cogn Commun Netw 2021; 7: 59–72. [CrossRef] [Google Scholar]
  101. Bendale A and Boult TE. Towards open set deep networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. IEEE, Las Vegas, NV, USA, June 2016, 1563–72. [Google Scholar]
  102. Xu HF and Xu XD. A transformer based approach for open set specific emitter identification. In 2021 7th International Conference on Computer and Communications (ICCC). IEEE, Chengdu, China, December 2021, 1420–5. [Google Scholar]
  103. Xu YJ, Qin XW and Xu XD et al. Open-set interference signal recognition using boundary samples: a hybrid approach. In: 2020 International Conference on Wireless Communications and Signal Processing (WCSP). IEEE, Nanjing, China, October 2020, 269–74. [Google Scholar]
  104. Yoshihashi R, Shao W and Kawakami R et al. Classification-reconstruction learning for open-set recognition. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. IEEE, Long Beach, CA, USA, June 2019, 4011–20. [Google Scholar]
  105. Wang N, Jiao L and Wang P et al. Exploiting beam features for spoofing attack detection in mmWave 60-GHz IEEE 802.11ad networks. IEEE Trans Wirel Commun 2021; 20: 3321–35. [CrossRef] [Google Scholar]
  106. Huang K, Yang J and Hu P et al. A novel framework for open-set authentication of Internet of Things using limited devices. Sensors 2022; 22: 2662. [CrossRef] [PubMed] [Google Scholar]
  107. Zhao YR, Wang X and Lin ZY et al. Multi-classifier fusion for open-set specific emitter identification. Remote Sens 2022; 14: 2226. [CrossRef] [Google Scholar]
  108. Chopra S, Hadsell R and LeCun Y. Learning a similarity metric discriminatively, with application to face verification. In: 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’05). IEEE, San Diego, CA, USA, June 2005, 1: 539–46. [CrossRef] [Google Scholar]
  109. Schroff F, Kalenichenko D and Philbin J. FaceNet: a unified embedding for face recognition and clustering. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. IEEE, Boston, MA, USA, June 2015, 815–23. [Google Scholar]
  110. Luo H, Gu YZ and Liao XY et al. Bag of tricks and a strong baseline for deep person re-identification. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops. IEEE, Long Beach, CA, USA, June 2019, 1487–95. [Google Scholar]
  111. Liu WY, Wen YD and Yu ZD et al. Large-margin softmax loss for convolutional neural networks. Int Conf Mach Learn 2016; 48: 7. [Google Scholar]
  112. Lei Y, Zhao CD and Wang YL et al. Security authentication of smart grid based on RFF. In: Lai Y, Wang T and Jiang M et al. (eds.). Algorithms and Architectures for Parallel Processing. ICA3PP 2021. Lecture Notes in Computer Science. Springer, Cham, Vol. 13157, December 2021, 362–75. [Google Scholar]
  113. Huang L, Pan WJ and Zhang Y et al. Data augmentation for deep learning-based radio modulation classification. IEEE Access 2020; 8: 1498–506. [CrossRef] [Google Scholar]
  114. Yang HM, Zhang XY and Yin F et al. Convolutional prototype network for open set recognition. IEEE Trans Pattern Anal Mach Intell 2020; 44: 2358–70. [Google Scholar]
  115. Zhao CD, Shi MX and Cai ZB et al. Research on the open-categorical classification of the Internet-of-Things based on generative adversarial networks. Appl Sci-Basel 2018; 8: 2351. [CrossRef] [Google Scholar]
  116. Roy D, Mukherjee T and Chatterjee M et al. Detection of rogue RF transmitters using generative adversarial nets. In: 2019 IEEE wireless communications and networking conference (WCNC). IEEE, Marrakesh, Morocco, April 2019, 1–7. [Google Scholar]
  117. Roy D, Mukherjee T and Chatterjee M et al. RFAL: adversarial learning for RF transmitter identification and classification. IEEE Trans Cogn Commun Netw 2020; 6: 783–801. [CrossRef] [Google Scholar]
  118. Han H, Cui L and Li W et al. Radio frequency fingerprint based wireless transmitter identification against malicious attacker: an adversarial learning approach. In: 2020 International Conference on Wireless Communications and Signal Processing (WCSP). IEEE, Nanjing, China, October 2020, 310–5. [CrossRef] [Google Scholar]
  119. Chen ZK, Peng LN and Hu AQ et al. Generative adversarial network-based rogue device identification using differential constellation trace figure. EURASIP J Wirel Commun Netw 2021; 2021: 72. [CrossRef] [Google Scholar]
  120. Karunaratne S, Hanna S and Cabric D. Open Set RF fingerprinting using generative outlier augmentation. In: 2021 IEEE Global Communications Conference (GLOBECOM). IEEE, Madrid, Spain, December 2021, 1–7. [Google Scholar]
  121. Nosouhi MR, Sood K and Grobler M et al. Towards spoofing resistant next generation IoT networks. IEEE Trans Inf Forensic Secur 2022; 17: 1669–83. [CrossRef] [Google Scholar]
  122. Mohanti S, Soltani N and Sankhe K et al. AirID: injecting a custom RF fingerprint for enhanced UAV identification using deep learning. In: GLOBECOM 2020–2020 IEEE Global Communications Conference. IEEE, Taipei, Taiwan, December 2020, 1–6. [Google Scholar]
  123. Wang ZF, Salehi B and Gritsenko A et al. Open-world class discovery with kernel networks. In: 2020 IEEE International Conference on Data Mining (ICDM). IEEE, Sorrento, Italy, November 2020, 631–40. [CrossRef] [Google Scholar]
  124. Karunaratne S, Hanna S and Cabric D. Real-time wireless transmitter authorization: adapting to dynamic authorized sets with information retrieval. In: 2021 IEEE International Symposium on Dynamic Spectrum Access Networks (DySPAN), IEEE, USA, December 2021, 302–8. [CrossRef] [Google Scholar]
  125. Feng YT, Wang GL and Liu ZP et al. An unknown radar emitter identification method based on semi-supervised and transfer learning. Algorithms 2019; 12: 271. [CrossRef] [Google Scholar]
  126. Morehouse T, Montes C and Bisbano M et al. Incremental learning-based jammer classification. In: Artificial Intelligence and Machine Learning for Multi-Domain Operations Applications III. SPIE, USA, Vol.11746, April 2021, 624–33. [Google Scholar]
  127. Liu YX, Wang J and Li JQ et al. Class-incremental learning for wireless device identification in IoT. IEEE Internet Things J 2021; 8: 17227–35. [CrossRef] [Google Scholar]
  128. Gong JL, Xu XD and Lei YK. Unsupervised specific emitter identification method using radio-frequency fingerprint embedded InfoGAN. IEEE Trans Inf Forensic Secur 2020; 15: 2898–913. [CrossRef] [Google Scholar]
  129. Shi JX, Peng LN and Fu H et al. Robust RF fingerprint extraction based on cyclic shift characteristic. IEEE Internet Things J 2023, doi: 10.1109/JIOT.2023.3281644. [Google Scholar]
  130. Shen GX, Zhang JQ and Marshall A et al. Toward length-versatile and noise-robust radio frequency fingerprint identification. IEEE Trans Inf Forensic Secur 2023; 18: 2355–67. [CrossRef] [Google Scholar]
  131. Jagannath A and Jagannath J. Embedding-assisted attentional deep learning for real-world RF fingerprinting of Bluetooth. IEEE Trans Cogn Commun Netw 2023, doi: 10.1109/TCCN.2023.3269764. [Google Scholar]
  132. Hanna S, Karunaratne S and Cabric D. WiSig: a large-scale WiFi signal dataset for receiver and channel agnostic RF fingerprinting. IEEE Access 2022; 10: 22808–18. [CrossRef] [Google Scholar]
  133. Liu YX, Wang J and Li JQ et al. Zero-bias deep learning for accurate identification of Internet-of-Things (IoT) devices. IEEE Internet Things J 2021; 8: 2627–34. [CrossRef] [Google Scholar]
  134. Soltani N, Reus-Muns G and Salehi B et al. RF fingerprinting unmanned aerial vehicles with non-standard transmitter waveforms. IEEE Trans Veh Technol 2020; 69: 15518–31. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.