Security and Safety
Volume 2, 2023
Security and Safety in Unmanned Systems
Article Number 2023024
Number of page(s) 17
Section Industrial Control
Published online 11 September 2023
  1. Yao D, Li H and Lu R et al. Event-triggered guaranteed cost leader-following consensus control of second-order nonlinear multiagent systems. IEEE Trans Syst Man Cybern: Syst 2022; 52: 2615–24. [CrossRef] [Google Scholar]
  2. Fu J, Lv Y and Yu W. Robust adaptive time-varying region tracking control of multi-robot systems. Sci Chin Inf Sci 2023; 66: 159202. [CrossRef] [Google Scholar]
  3. Sun J, Zhou H and Xi H et al. Adaptive design of experiments for safety evaluation of automated vehicles. IEEE Trans Intell Transp Syst 2022; 23: 14497–508. [CrossRef] [Google Scholar]
  4. Pan Y, Li Q and Liang H et al. A novel mixed control approach for fuzzy systems via membership functions online learning policy. IEEE Trans Fuzzy Syst 2022; 30: 3812–22. [CrossRef] [Google Scholar]
  5. Ren H, Ma H and Li H et al. Adaptive fixed-time control of nonlinear MASs with actuator faults. IEEE/CAA J Autom Sin 2023; 10: 1252–62. [CrossRef] [Google Scholar]
  6. Liu Y, Yao D and Wang L et al. Distributed adaptive fixed-time robust platoon control for fully heterogeneous vehicles. IEEE Trans Syst Man Cybern: Syst 2023; 53: 264–74. [CrossRef] [Google Scholar]
  7. Li X, Wen C and Chen C. Adaptive formation control of networked robotic systems with bearing-only measurements. IEEE Trans Cybern 2021; 51: 199–209. [CrossRef] [PubMed] [Google Scholar]
  8. Dai SL, He S and Cai H et al. Adaptive leader-follower formation control of underactuated surface vehicles with guaranteed performance. IEEE Trans Syst Man Cybern: Systs 2022; 52: 1997–2008. [CrossRef] [Google Scholar]
  9. Zhang D, Tang Y and Zhang W et al. Hierarchical design for position-based formation control of rotorcraft-like aerial vehicles. IEEE Trans Control Netw Syst 2020; 7: 1789–800. [CrossRef] [Google Scholar]
  10. Van Vu D, Trinh MH and Nguyen PD et al. Distance-based formation control with bounded disturbances. IEEE Control Syst Lett 2021; 5: 451–6. [CrossRef] [Google Scholar]
  11. Li R, Zhang L and Han L et al. Multiple vehicle formation control based on robust adaptive control algorithm. IEEE Intell Transp Syst Mag 2017; 9: 41–51. [CrossRef] [Google Scholar]
  12. Li J, Fang Y and Cheng H et al. Large-scale fixed-wing UAV swarm system control with collision avoidance and formation maneuver. IEEE Syst J 2023; 17: 744–55. [CrossRef] [Google Scholar]
  13. Dong X, Li Y and Lu C et al. Time-varying formation tracking for UAV swarm systems with switching directed topologies. IEEE Trans Neural Netw Learn Syst 2019; 30: 3674–85. [CrossRef] [PubMed] [Google Scholar]
  14. Guo Z, Li H and Ma H et al. Distributed optimal attitude synchronization control of multiple QUAVs via adaptive dynamic programming. IEEE Trans Neural Netw Learn Syst 2022, doi: 10.1109/TNNLS.2022.3224029. [PubMed] [Google Scholar]
  15. Ding SX. A note on diagnosis and performance degradation detection in automatic control systems towards functional safety and cyber security. Secur Saf. 2022; 1: 2022004. [Google Scholar]
  16. Liu Z, Gao H and Yu X et al. B-spline wavelet neural network-based adaptive control for linear motor-driven systems via a novel gradient descent algorithm. IEEE Trans Ind Electron 2023; 71: 1896–905. [Google Scholar]
  17. Ren H, Ma H and Li H et al. A disturbance observer based intelligent control for nonstrict-feedback nonlinear systems. Sci China Technol Sci 2022; 66: 456–67. [Google Scholar]
  18. Sun J, Zhang H and Wang Y et al. Fault-tolerant control for stochastic switched IT2 fuzzy uncertain time-delayed nonlinear systems. IEEE Trans Cybern 2022; 52: 1335–46. [CrossRef] [PubMed] [Google Scholar]
  19. Li Y, Min X and Tong S. Observer-based fuzzy adaptive inverse optimal output feedback control for uncertain nonlinear systems. IEEE Trans Fuzzy Syst 2021; 29: 1484–95. [CrossRef] [Google Scholar]
  20. Hou M, Shi W and Fang L et al. Adaptive dynamic surface control of high-order strict feedback nonlinear systems with parameter estimations. Sci China Inf Sci 2023; 66: 159203. [CrossRef] [Google Scholar]
  21. Gao H, Li Z and Yu X et al. Hierarchical multiobjective heuristic for PCB assembly optimization in a beam-head surface mounter. IEEE Trans Cybern 2022; 52: 6911–24. [CrossRef] [PubMed] [Google Scholar]
  22. Gao S, Zhang H and Wang Z et al. Optimal injection attack strategy for cyber-physical systems: a dynamic feedback approach. Secur Saf 2022; 1: 2022005. [Google Scholar]
  23. Shi P, Sun W and Yang X et al. Master-slave synchronous control of dual-drive gantry stage with cogging force compensation. IEEE Trans Syst Man Cybern: Syst 2023; 53: 216–25. [CrossRef] [Google Scholar]
  24. Zeng HB, He Y and Teo KL. Monotone-delay-interval-based Lyapunov functionals for stability analysis of systems with a periodically varying delay. Automatica 2022; 138: 110030. [CrossRef] [Google Scholar]
  25. Zheng X, Li H and Ahn CK et al. NN-based fixed-time attitude tracking control for multiple unmanned aerial vehicles with nonlinear faults. IEEE Trans Aerosp Electron Syst 2022; 59: 1738–48. [Google Scholar]
  26. Ren H, Wang Y and Liu M et al. An optimal estimation framework of multi-agent systems with random transport protocol. IEEE Trans Signal Process 2022; 70: 2548–59. [CrossRef] [Google Scholar]
  27. Zhang H, Zhao X and Wang H et al. Adaptive tracking control for output-constrained switched MIMO pure-feedback nonlinear systems with input saturation. J Syst Sci Complex 2023; 36: 960–84. [CrossRef] [Google Scholar]
  28. Liu Z, Lin W and Yu X et al. Approximation-free robust synchronization control for dual-linear-motors-driven systems with uncertainties and disturbances. IEEE Trans Ind Electron 2022; 69: 10500–9. [CrossRef] [Google Scholar]
  29. Ma L, Zhu F and Zhao X. Human-in-the-loop consensus control for multiagent systems with external disturbances. IEEE Trans Neural Netw Learn Syst 2023, doi: 10.1109/TNNLS.2023.3246567. [PubMed] [Google Scholar]
  30. Feng L, Wiltsche C and Humphrey L et al. Synthesis of human-in-the-loop control protocols for autonomous systems. IEEE Trans Autom Sci Eng 2016; 13: 450–62. [CrossRef] [Google Scholar]
  31. Koru AT, Yucelen T and Sipahi R et al. Stability of human-in-the-loop multiagent systems with time delays. In: 2019 American Control Conf (ACC). IEEE, 2019, 4854–9. [CrossRef] [Google Scholar]
  32. Lin G, Li H and Ma H et al. Distributed containment control for human-in-the-loop MASs with unknown time-varying parameters. IEEE Trans Circuits Syst I Reg Papers 2022; 69: 5300–11. [CrossRef] [Google Scholar]
  33. Wu HN. Online learning human behavior for a class of human-in-the-loop systems via adaptive inverse optimal control. IEEE Trans Human-Machine Syst 2022; 52: 1004–14. [CrossRef] [Google Scholar]
  34. Lin G, Li H and Ahn CK et al. Event-based finite-time neural control for human-in-the-loop UAV attitude systems. IEEE Trans Neural Netw Learn Syst 2022, doi: 10.1109/TNNLS.2022.3166531. [Google Scholar]
  35. Su H, Cheng B and Li Z. Cooperative output regulation of heterogeneous systems over directed graphs: a dynamic adaptive event-triggered strategy. J Syst Sci Complex 2023; 36: 909–21. [CrossRef] [Google Scholar]
  36. Sun W, Shen JX and Wang K et al. Motor control application of fixed-sampling-interval and fixed-depth moving average filters. IEEE Trans Ind Appl 2016; 52: 1831–41. [Google Scholar]
  37. Baek S, Cho Y and Lai JS. Average periodic delay-based frequency adaptable repetitive control with a fixed sampling rate and memory of single-phase PFC converters. IEEE Trans Power Electron 2021; 36: 6572–85. [CrossRef] [Google Scholar]
  38. Wang X, Sun J and Wang G et al. Data-driven control of distributed event-triggered network systems. IEEE/CAA J Autom Sinica 2023; 10: 351–64. [CrossRef] [Google Scholar]
  39. Chen G, Liu Y and Yao D et al. Event-triggered tracking control of nonlinear systems under sparse attacks and its application to rigid aircraft. IEEE Trans Aerosp Electron Syst 2023; 59: 4640–50. [CrossRef] [Google Scholar]
  40. Cao L, Cheng Z and Liu Y et al. Event-based adaptive NN fixed-time cooperative formation for multiagent systems. IEEE Trans Neural Netw Learn Syst 2022, doi: 10.1109/TNNLS.2022.3210269. [Google Scholar]
  41. Shangguan XC, Zhang CK and He Y et al. Robust load frequency control for power system considering transmission delay and sampling period. IEEE Trans Ind Inf 2021; 17: 5292–303. [CrossRef] [Google Scholar]
  42. Li H, Luo J and Ma H et al. Observer-based event-triggered iterative learning consensus for locally lipschitz nonlinear MASs. IEEE Trans Cogn Dev Syst 2023, doi: 10.1109/TCDS.2023.3274794. [Google Scholar]
  43. Yao D, Li H and Shi Y. Adaptive event-triggered sliding-mode control for consensus tracking of nonlinear multiagent systems with unknown perturbations. IEEE Trans Cybern 2023; 53: 2672–84. [CrossRef] [PubMed] [Google Scholar]
  44. Li Y, Li YX and Tong S. Event-based finite-time control for nonlinear multiagent systems with asymptotic tracking. IEEE Trans Autom Control 2023; 68: 3790–7. [CrossRef] [Google Scholar]
  45. Ren H, Cheng Z and Qin J et al. Deception attacks on event-triggered distributed consensus estimation for nonlinear systems. Automatica 2023; 154: 111100. [CrossRef] [Google Scholar]
  46. Chen L, Wang Y and Hou ZG et al. Sampled-data based average consensus of second-order integral multi-agent systems: Switching topologies and communication noises. Automatica 2013; 49: 1458–64. [CrossRef] [Google Scholar]
  47. Bernuau E, Moulay E and Coirault P et al. Practical consensus of homogeneous sampled-data multiagent systems. IEEE Trans Autom Control 2019; 64: 4691–7. [CrossRef] [Google Scholar]
  48. Qiu J, Sun K and Wang T et al. Observer-based fuzzy adaptive event-triggered control for pure-feedback nonlinear systems with prescribed performance. IEEE Trans Fuzzy Sys 2019; 27: 2152–62. [CrossRef] [Google Scholar]
  49. Ma H, Li H and Lu R et al. Adaptive event-triggered control for a class of nonlinear systems with periodic disturbances. Sci China Inf Sci 2020; 63: 150212. [CrossRef] [Google Scholar]
  50. Liu L, Liu YJ and Tong S et al. Relative threshold-based event-triggered control for nonlinear constrained systems with application to aircraft wing rock motion. IEEE Trans Ind Inf 2022; 18: 911–21. [CrossRef] [Google Scholar]
  51. Wang L and Chen CLP Reduced-order observer-based dynamic event-triggered adaptive NN control for stochastic nonlinear systems subject to unknown input saturation. IEEE Trans Neural Netw Learn Syst 2021; 32: 1678–90. [CrossRef] [PubMed] [Google Scholar]
  52. Cao L, Pan Y and Liang H et al. Observer-based dynamic event-triggered control for multiagent systems with time- varying delay. IEEE Trans Cybern 2023; 53: 3376–87. [CrossRef] [PubMed] [Google Scholar]
  53. Tarczewski T and Grzesiak LM. Constrained state feedback speed control of PMSM based on model predictive approach. IEEE Trans Ind Electron 2016; 63: 3867–75. [CrossRef] [Google Scholar]
  54. Zhang T, Xia M and Yi Y. Adaptive neural dynamic surface control of strict-feedback nonlinear systems with full state constraints and unmodeled dynamics. Automatica 2017; 81: 232–9. [CrossRef] [Google Scholar]
  55. Wang T, Ma M and Qiu J et al. Event-triggered adaptive fuzzy tracking control for pure-feedback stochastic nonlinear systems with multiple constraints. IEEE Trans Fuzzy Syst 2021; 29: 1496–506. [CrossRef] [Google Scholar]
  56. Ma H, Ren H and Zhou Q et al. Observer-based neural control of N-link exible-joint robots. IEEE Trans Neural Netw Learn Syst 2022, doi: 10.1109/TNNLS.2022.3203074. [PubMed] [Google Scholar]
  57. Sun Y, Chen B and Lin C et al. Adaptive neural control for a class of stochastic nonlinear systems by backstepping approach. Inf Sci 2016; 369: 748–64. [CrossRef] [Google Scholar]
  58. Chen B, Liu XP and Ge SS et al. Adaptive fuzzy control of a class of nonlinear systems by fuzzy approximation approach. IEEE Trans Fuzzy Syst 2012; 20: 1012–21. [CrossRef] [Google Scholar]
  59. Yu J, Shi P and Zhao L. Finite-time command filtered backstepping control for a class of nonlinear systems. Automatica 2018; 92: 173–80. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.