Open Access
Issue |
Security and Safety
Volume 2, 2023
Security and Safety in the "Metaverse"
|
|
---|---|---|
Article Number | 2023002 | |
Number of page(s) | 17 | |
Section | Other Fields | |
DOI | https://doi.org/10.1051/sands/2023002 | |
Published online | 03 May 2023 |
- Ning H., Wang H. and Lin Y., et al. A survey on metaverse: the state-of-the-art, technologies, applications, and challenges, arXiv preprint arXiv preprint [arXiv:2111.09673], 2021. [Google Scholar]
- Grider D., Maximo M. The metaverse: Web3.0 virtualcloud economies, (accessed on 1 November 2021). https://grayscale.com/wpcontent/uploads/2021/11/Graysca-le_Metaverse_Report_Nov2021.pdf. [Google Scholar]
- Lee L.H., Braud T. and Zhou P., et al. All one needs to know about metaverse: A complete survey on technological singularity, virtual ecosystem, andresearch agenda, arXiv preprint [arXiv:2110.05352], 2021. [Google Scholar]
- Sajjad R., Martin M., The Metaverse and Beyond: Implementing Advanced Multiverse Realms With Smart Wearables[J], IEEE Access, 2022; 10: 110796–110806. [Google Scholar]
- Yang Q., Zhao Y., Huang H., Zheng Z. Fusing blockchain and Awith metaverse: A survey, arXiv preprint [arXiv:2201.03201], 2000. [Google Scholar]
- Li Q., Feng X. and Wang H. Automatically discovering surveillance devices in the cyberspace. In: Proceedings of the 8th ACM on Multimedia Systems Conference, New York, 2017, 331–42. [Google Scholar]
- Zhang H., Han W. and Lai X. et al. Survey on cyberspace security. Sci Sin Inf 2016; 46: 125–64. [CrossRef] [Google Scholar]
- Feng G.D., Zhang Y. and Zhang Y.Q. Overview of information security risk assessment. J China Inst Commun 2004; 25: 10–8. [Google Scholar]
- Xi R.G., Yun X.C. and Jin S.Y., Research survey of Network security situation awareness. Comput Appl 2012; 32: 1–4. [Google Scholar]
- Shah S. An introduction to HTTP fingerprinting. Net-Square Solutions, 2004. [Google Scholar]
- Gao K. A passive approach to wireless device fingerprinting. In: Proceedings of the 2010 IEEE/IFIP International Conference on Dependable Systems & Networks, 2010, 383–92. [Google Scholar]
- Luo X.Y., Liu Y. and Yin M.J., Network Space Mapping. Beijing: Science Press, 2021. [Google Scholar]
- Genevieve B., John H. and Christos P. Understanding passive and active service discovery. In: Proceedings of the 7th ACM SIGCOMM Conference on Internet Measurement, 2007, 57–70. [Google Scholar]
- Wang C.D., Guo Y.B., Zhen S.H. Yang WC. Research on network asset detection technology. Comput Sci 2018; 45: 24–31. [Google Scholar]
- Li R, Shen M and Yu H et al. A survey on cyberspace search engines. In: Proceedings of the CCIS, 2020, 206–14. [Google Scholar]
- S. Arunan, H.G. Hassan and L. Franco et al., Classifying IoT devices in smart environments using network traffic characteristics. IEEE Trans Mobile Comput 2018; 18: 1745–59. [Google Scholar]
- Aneja S., Aneja N. and Islam M.S. IoT device fingerprint using deep learning. In: Proceedings of the 2018 IEEE International Conference on Internet of Things and Intelligence System, 2018, 174–79. [Google Scholar]
- Greis J., Yushchenko A., Vogel D., Meier M. Steinhage V. Automated Identification of Vulnerable Devices in Networks using Traffic Data and Deep Learning, [arXiv:2102.08199], 2021. [Google Scholar]
- Umair M.B., Iqbal Z. and Bilal M. et al. An efficient internet traffic classification system using deep learning for IoT. Comput Mater Continua 2022; 71: 407–22. [CrossRef] [Google Scholar]
- Zhu B.K., Hou X.Y., Liu S.M., Ma W.L., Dong M.Y., Wen H.B., Wei Q., Du S.X. and Zhang Y.F. IoT Equipment Monitoring System Based on C5.0 Decision Tree and Time-Series Analysis[J]. IEEE Access 2021; 10: 36637–36648. [Google Scholar]
- Meidan Y., Bohadana M. and Shabtai A., et al. ProfilIoT: A machine learning approach for IoT device identification based on network traffic analysis. In: Proceedings of the Symposium on Applied Computing, 2017, 506–09. [Google Scholar]
- Kotak J., Y. Elovici IoT device identification using deep learning. In: Proceedings of the 13th International Conference on Computational Intelligence in Security for Information Systems, Spain, 2019, 76–86. [Google Scholar]
- Shiv R.D., Satish K.S. and Bidyut B.C. Activation functions in deep learning: A comprehensive survey and benchmark. Neurocomputing 2022; 503; 92–108. [CrossRef] [Google Scholar]
- Mettinen M, Marchal S and Hafeez I et al. IoT sentinel: Automated device-type identification for security enforcement in IoT. In: Proceedings of the 37th IEEE International Conference on Distributed Computing Systems, 2017. [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.