Open Access
Review
Issue
Security and Safety
Volume 1, 2022
Article Number 2021001
Number of page(s) 43
Section Other Fields
DOI https://doi.org/10.1051/sands/2021001
Published online 14 June 2022
  1. Beaver D, Micali S and Rogaway P. The round complexity of secure protocols (extended abstract). In: 22nd ACM STOC. ACM Press, 1990, 503–13. [Google Scholar]
  2. Ben-Or M, Goldwasser S and Wigderson A. Completeness theorems for non-cryptographic fault-tolerant distributed computation (extended abstract). In: 20th ACM STOC. ACM Press, 1988, 1–10. [Google Scholar]
  3. Chaum D, Crépeau C and Damgård I. Multiparty unconditionally secure protocols (extended abstract). In: 20th ACM STOC. ACM Press, 1988, 11–19. [Google Scholar]
  4. Goldreich O, Micali S and Wigderson A. How to play any mental game or A completeness theorem for protocols with honest majority. In: Aho A (ed.). 19th ACM STOC. ACM Press, 1987, 218–29. [Google Scholar]
  5. Rabin T and Ben-Or M. Verifiable secret sharing and multiparty protocols with honest majority (extended abstract). In: 21st ACM STOC. ACM Press, 1989, 73–85. [Google Scholar]
  6. Yao AC-C. How to generate and exchange secrets (extended abstract). In: 27th FOCS. IEEE Computer Society Press, 1986, 162–7. [Google Scholar]
  7. Demmler D, Schneider T and Zohner M. ABY - A framework for efficient mixed-protocol secure two-party computation. In: NDSS 2015. The Internet Society, 2015. [Google Scholar]
  8. Wang X, Malozemoff AJ and Katz J. EMP-toolkit: Efficient MultiParty Computation Toolkit. https://github.com/emp-toolkit, 2016. [Google Scholar]
  9. Alexandra Institute. FRESCO - A FRamework for Efficient Secure COmputation. https://github.com/aicis/fresco. [Google Scholar]
  10. Multiparty.org Development Team. Javascript Implementation of Federated Functionalities, 2020. https://github.com/multiparty/jiff. [Google Scholar]
  11. Data61. Mp-spdz. https://github.com/data61/MP-SPDZ, 2019. [Google Scholar]
  12. Schoenmakers B. MPyC: Secure Multiparty Computation in Python https://github.com/lschoe/mpyc. [Google Scholar]
  13. Aly A, Keller M and Orsini E et al. SCALE-MAMBA v1.14: Documentation, 2021. https://github.com/KULeuven-COSIC/SCALE-MAMBA. [Google Scholar]
  14. Bogdanov D, Laur S and Willemson J. Sharemind: A framework for fast privacy-preserving computations. In: Jajodia S and López J (eds.). ESORICS 2008, volume 5283 of LNCS. Heidelberg: Springer, 2008, 192–206. [Google Scholar]
  15. Songhori EM, Hussain SU and Sadeghi A-R et al. TinyGarble: highly compressed and scalable sequential garbled circuits. In: 2015 IEEE Symposium on Security and Privacy. IEEE Computer Society Press, 2015, 411–28. [CrossRef] [Google Scholar]
  16. Hastings M, Hemenway B and Noble D et al. SoK: General purpose compilers for secure multi-party computation. In: 2019 IEEE Symposium on Security and Privacy. IEEE Computer Society Press, 2019, 1220–37. [Google Scholar]
  17. Keller M. MP-SPDZ: A versatile framework for multi-party computation. In: Ligatti J, Ou X, Katz J and Vigna G (eds.). ACM CCS 20. ACM Press, 2020, 1575–90. [CrossRef] [Google Scholar]
  18. Agrawal N, Shahin Shamsabadi A and Kusner MJ et al. QUOTIENT: Two-party secure neural network training and prediction. In: Cavallaro L, Kinder J, Wang X, Katz J (eds.). ACM CCS 2019. ACM Press, 2019, 1231–47. [Google Scholar]
  19. Chaudhari H, Rachuri R and Suresh A. Trident: Efficient 4PC framework for privacy preserving machine learning. In: NDSS 2020. The Internet Society, 2020. [Google Scholar]
  20. Juvekar C, Vaikuntanathan V and Chandrakasan A. GAZELLE: A low latency framework for secure neural network inference. In: Enck W and Felt AP (eds.). USENIX Security 2018. USENIX Association, 2018, 1651–69. [Google Scholar]
  21. Kumar N, Rathee M and Chandran N et al. CrypTFlow: secure TensorFlow inference. In: 2020 IEEE Symposium on Security and Privacy. IEEE Computer Society Press, 2020, 336–53. [CrossRef] [Google Scholar]
  22. Mishra P, Lehmkuhl R and Srinivasan A et al. Delphi: A cryptographic inference service for neural networks. In: Capkun S and Roesner F (eds.). USENIX Security 2020. USENIX Association, 2020, 2505–22. [Google Scholar]
  23. Mohassel P and Rindal P. ABY3: A mixed protocol framework for machine learning. In: Lie D, Mannan M, Backes M and Wang XF (eds.). ACM CCS 2018. ACM Press, 2018, 35–52. [Google Scholar]
  24. Mohassel P and Zhang Y. SecureML: A system for scalable privacy-preserving machine learning. In: 2017 IEEE Symposium on Security and Privacy. IEEE Computer Society Press, 2017, 19–38. [CrossRef] [Google Scholar]
  25. Patra A, Schneider T and Suresh A et al. ABY2.0: Improved Mixed-protocol Secure Two-party Computation. Cryptology ePrint Archive, Report 2020/1225, 2020. https://eprint.iacr.org/2020/1225. [Google Scholar]
  26. Patra A and Suresh A. BLAZE: Blazing fast privacy-preserving machine learning. In: NDSS 2020. The Internet Society, 2020. [Google Scholar]
  27. Rathee D, Rathee M and Goli RKK et al. SIRNN: A Math Library for Secure RNN Inference. Cryptology ePrint Archive, Report 2021/459, 2021. https://eprint.iacr.org/2021/459. [Google Scholar]
  28. Rathee D, Rathee M and Kumar N et al. CrypTFlow2: practical 2-party secure inference. In: Ligatti J, Ou X, Katz J and Vigna G (eds.). ACM CCS 20. ACM Press, 2020, 325–42. [CrossRef] [Google Scholar]
  29. Riazi M S, Samragh M and Chen H et al. XONN: XNOR-based oblivious deep neural network inference. In: Heninger N and Traynor P (eds.). USENIX Security 2019. USENIX Association, 2019, 1501–18. [Google Scholar]
  30. Schoppmann P, Gascón A and Raykova M et al. Make some ROOM for the zeros: data sparsity in secure distributed machine learning. In: Cavallaro L, Kinder J, Wang XF and Katz J (eds.). ACM CCS 2019. ACM Press, 2019, 1335–50. [Google Scholar]
  31. Tan S, Knott B and Tian Y et al. CryptGPU: fast privacy-preserving machine learning on the GPU. In: IEEE Symposium on Security and Privacy, 2021. [Google Scholar]
  32. Brunetta C, Tsaloli G and Liang B et al. Non-interactive, secure verifiable aggregation for decentralized, privacy-preserving learning. Cryptology ePrint Archive, Report 2021/654, 2021. https://eprint.iacr.org/2021/654. [Google Scholar]
  33. Fereidooni H, Marchal S and Miettinen M et al. SAFELearn: Secure Aggregation for private FEderated Learning. Cryptology ePrint Archive, Report 2021/386, 2021. https://eprint.iacr.org/2021/386. [Google Scholar]
  34. Han K, Jeong J and Sohn JH et al. Efficient privacy preserving logistic regression inference and training. Cryptology ePrint Archive, Report 2020/1396, 2020. https://eprint.iacr.org/2020/1396. [Google Scholar]
  35. Zheng W, Deng R and Chen W et al. Cerebro: A Platform for Multi-party Cryptographic Collaborative Learning. Cryptology ePrint Archive, Report 2021/759, 2021. https://eprint.iacr.org/2021/759. [Google Scholar]
  36. Zheng Q, Popa RA and Gonzalez JE et al. Helen: maliciously secure coopetitive learning for linear models. In: 2019 IEEE Symposium on Security and Privacy. IEEE Computer Society Press, 2019, 724–38. [CrossRef] [Google Scholar]
  37. Bogdanov D, Niitsoo M and Toft T et al. High-performance secure multi-party computation for data mining applications. Int J Inf Secur 2012; 11: 403–18. [Google Scholar]
  38. Burkhart M, Strasser M and Many D et al. SEPIA: Privacy-preserving aggregation of multi-domain network events and statistics. In: USENIX Security 2010. USENIX Association, 2010, 223–40. [Google Scholar]
  39. Cramer R, Damgård IB and Nielsen JB. Secure Multiparty Computation and Secret Sharing. Cambridge University Press, 2015. [CrossRef] [Google Scholar]
  40. Lindell Y and Pinkas B. Privacy preserving data mining. J Cryptol 2002; 15: 177–206. [Google Scholar]
  41. Ben-David A, Nisan N and Pinkas B. FairplayMP: A system for secure multi-party computation. In: Ning P, Syverson PF and Jha S (eds.). ACM CCS 2008. ACM Press, 2008, 257–66. [Google Scholar]
  42. Bogetoft P, Christensen DL and Damgård I et al. Secure multiparty computation goes live. In: Dingledine R and Golle P (eds.). FC 2009, volume 5628 of LNCS. Heidelberg: Springer, 2009, 325–43. [Google Scholar]
  43. Keller M, Orsini E and Scholl P. MASCOT: Faster malicious arithmetic secure computation with oblivious transfer. In: Weippl ER, Katzenbeisser S, Kruegel C, Myers AC and Halevi S (eds.). ACM CCS 2016. ACM Press, 2016, 830–42. [Google Scholar]
  44. Cho H, Wu DJ and Berger B. Secure genome-wide association analysis using multiparty computation. Nat Biotechnol 2018; 36: 547–51. [Google Scholar]
  45. Jagadeesh KA, Wu DJ and Birgmeier JA et al. Deriving genomic diagnoses without revealing patient genomes. Science 2017; 357: 692–5. [Google Scholar]
  46. Jha S, Kruger L and Shmatikov V. Towards practical privacy for genomic computation. In: 2008 IEEE Symposium on Security and Privacy. IEEE Computer Society Press, 2008, 216–30. [CrossRef] [Google Scholar]
  47. Archer DW, Bogdanov D and Lindell Y et al. From keys to databases - real-world applications of secure multi-party computation. Comput J 2018; 61: 1749–71. [Google Scholar]
  48. Almashaqbeh G and Solomon R. Sok: Privacy-preserving computing in the blockchain era. Cryptology ePrint Archive, Report 2021/727, 2021. https://eprint.iacr.org/2021/727. [Google Scholar]
  49. Atapoor S, Smart NP and Alaoui YT. Private liquidity matching using MPC. Cryptology ePrint Archive, Report 2021/475, 2021. https://eprint.iacr.org/2021/475. [Google Scholar]
  50. Banerjee A, Clear M and Tewari H. zkhawk: Practical private smart contracts from MPC-based hawk. Cryptology ePrint Archive, Report 2021/501, 2021. https://eprint.iacr.org/2021/501. [Google Scholar]
  51. Dolev S and Wang Z. Sodsmpc: FSM based anonymous and private quantum-safe smart contracts. Cryptology ePrint Archive, Report 2020/1346, 2020. https://eprint.iacr.org/2020/1346. [Google Scholar]
  52. El Defrawy K and Lampkins J. Founding digital currency on secure computation. In: Proceedings of the 2014 ACM SIGSAC Conference on Computer and Communications Security, CCS’14. Association for Computing Machinery, 2014, 1–14. [Google Scholar]
  53. Green M and Miers I. Bolt: Anonymous payment channels for decentralized currencies. In: Thuraisingham BM, Evans D, Malkin T and Xu D (eds.). ACM CCS 2017. ACM Press, 2017, 473–89. [Google Scholar]
  54. Ames S, Hazay C and Ishai Y et al. Ligero: Lightweight sublinear arguments without a trusted setup. In: Thuraisingham BM, Evans D, Malkin T and Xu D (eds.). ACM CCS 2017. ACM Press, 2017, 2087–2104. [Google Scholar]
  55. Bhadauria R, Fang Z and Hazay C et al. Ligero++: A new optimized sublinear IOP. In: Ligatti J, Ou X, Katz J and Vigna G (eds.). ACM CCS 20. ACM Press, 2020, 2025–38. [CrossRef] [Google Scholar]
  56. Chase M, Derler D and Goldfeder S et al. Post-quantum zero-knowledge and signatures from symmetric-key primitives. In: Thuraisingham BM, Evans D, Malkin T and Xu D (eds.). ACM CCS 2017. ACM Press, 2017, 1825–1842. [Google Scholar]
  57. De Saint Guilhem CD, Orsini E and Tanguy T. Limbo: Efficient zero-knowledge mpcith-based arguments. Cryptology ePrint Archive, Report 2021/215, 2021. https://ia.cr/2021/215. [Google Scholar]
  58. Giacomelli I, Madsen J and Orlandi C. ZKBoo: Faster zero-knowledge for Boolean circuits. In: Holz T and Savage S (eds.). USENIX Security 2016. USENIX Association, 2016, 1069–83. [Google Scholar]
  59. Gvili Y, Scheffler S and Varia M. Booligero: Improved sublinear zero knowledge proofs for Boolean circuits. Cryptology ePrint Archive, Report 2021/121, 2021. https://eprint.iacr.org/2021/121. [Google Scholar]
  60. Ishai Y, Kushilevitz E and Ostrovsky R et al. Zero-knowledge from secure multiparty computation. In: Johnson DS and Feige U (eds.). 39th ACM STOC. ACM Press, 2007, 21–30. [Google Scholar]
  61. Katz J, Kolesnikov V and Wang X. Improved non-interactive zero knowledge with applications to post-quantum signatures. In: Lie D, Mannan M, Backes M and Wang XF (eds.). ACM CCS 2018. ACM Press, 2018, 525–37. [Google Scholar]
  62. Baum C, Braun L and Munch-Hansen A et al. Appenzeller to brie: Efficient zero-knowledge proofs for mixed-mode arithmetic and Formula . Cryptology ePrint Archive, Report 2021/750, 2021. https://eprint.iacr.org/2021/750. [Google Scholar]
  63. Baum C, Malozemoff AJ and Rosen M et al. Mac’n’cheese: Zero-knowledge proofs for arithmetic circuits with nested disjunctions. Cryptology ePrint Archive, Report 2020/1410, 2020. https://eprint.iacr.org/2020/1410. [Google Scholar]
  64. Dittmer S, Ishai Y and Ostrovsky R. Line-point zero knowledge and its applications. Cryptology ePrint Archive, Report 2020/1446, 2020. https://eprint.iacr.org/2020/1446. [Google Scholar]
  65. Frederiksen TK, Nielsen JB and Orlandi C. Privacy-free garbled circuits with applications to efficient zero-knowledge. In: Oswald E and Fischlin M (eds.). EUROCRYPT 2015, Part II, volume 9057 of LNCS. Heidelberg: Springer, 2015, 191–219. [Google Scholar]
  66. Heath D and Kolesnikov V. Stacked garbling for disjunctive zero-knowledge proofs. In: Canteaut A and Ishai Y (eds.). EUROCRYPT 2020, Part III, volume 12107 of LNCS. Heidelberg: Springer, 2020, 569–98. [Google Scholar]
  67. Jawurek M, Kerschbaum F and Orlandi C. Zero-knowledge using garbled circuits: how to prove non-algebraic statements efficiently. In: Sadeghi A-R, Gligor VD and Yung M (eds.). ACM CCS 2013. ACM Press, 2013, 955–66. [Google Scholar]
  68. Kondi Y and Patra A. Privacy-free garbled circuits for formulas: size zero and information-theoretic. In: Katz J and Shacham H (eds.). CRYPTO 2017, Part I, volume 10401 of LNCS. Heidelberg: Springer, 2017, 188–222. [Google Scholar]
  69. Weng C, Yang K, Katz J and Wang X. Wolverine: Fast, Scalable, and Communication-efficient Zero-knowledge Proofs for Boolean and Arithmetic Circuits. IEEE Computer Society Press, 2021. [Google Scholar]
  70. Weng C, Yang K and Xie X et al. Mystique: Efficient Conversions for Zero-knowledge Proofs with Applications to Machine Learning. Cryptology ePrint Archive, Report 2021/730, 2021. https://eprint.iacr.org/2021/730. [Google Scholar]
  71. Yang K, Sarkar P and Weng C et al. Quicksilver: Efficient and Affordable Zero-knowledge Proofs for Circuits and Polynomials Over Any Field. Cryptology ePrint Archive, Report 2021/076, 2021. https://eprint.iacr.org/2021/076. [Google Scholar]
  72. Canetti R, Gennaro R and Goldfeder S et al. UC non-interactive, proactive, threshold ECDSA with identifiable aborts. In: Ligatti J, Ou X, Katz J and Vigna G (eds.). ACM CCS 20. ACM Press, 2020, 1769–87. [CrossRef] [Google Scholar]
  73. Chen M, Cohen R and Doerner J et al. Multiparty generation of an RSA modulus. In: Micciancio D and Ristenpart T (eds.). CRYPTO 2020, Part III, volume 12172 of LNCS. Heidelberg: Springer, 2020, 64–93. [Google Scholar]
  74. Chen M, Hazay C and Ishai Y et al. Diogenes: Lightweight scalable RSA modulus generation with a dishonest majority. Cryptology ePrint Archive, Report 2020/374, 2020. https://eprint.iacr.org/2020/374. [Google Scholar]
  75. Doerner J, Kondi Y and Lee E et al. Secure two-party threshold ECDSA from ECDSA assumptions. In: 2018 IEEE Symposium on Security and Privacy. IEEE Computer Society Press, 2018, 980–997. [CrossRef] [Google Scholar]
  76. Doerner J, Kondi Y and Lee E et al. Threshold ECDSA from ECDSA assumptions: The multiparty case. In: 2019 IEEE Symposium on Security and Privacy. IEEE Computer Society Press, 2019, 1051–66. [Google Scholar]
  77. Frederiksen TK, Lindell Y and Osheter V et al. Fast distributed RSA key generation for semi-honest and malicious adversaries. In: Shacham H and Boldyreva A (eds.). CRYPTO 2018, Part II, volume 10992 of LNCS. Heidelberg: Springer, 2018, 331–61. [Google Scholar]
  78. Hazay C, Mikkelsen G and Rabin T et al. Efficient RSA key generation and threshold paillier in the two-party setting. J Cryptol 2019; 32: 265–323. [Google Scholar]
  79. Lindell Y and Nof A. Fast secure multiparty ECDSA with practical distributed key generation and applications to cryptocurrency custody. In: Lie D, Mannan M, Backes M and Wang XF (eds.). ACM CCS 2018. ACM Press, 2018, 1837–54. [Google Scholar]
  80. Garimella G, Pinkas B and Rosulek M et al. Oblivious key-value stores and amplification for private set intersection. In: Malkin T and Peikert C (eds.). Advances in Cryptology - CRYPTO 2021, volume 12826 of LNCS. Springer International Publishing, 2021, 395–425. [CrossRef] [Google Scholar]
  81. Pinkas B, Rosulek M and Trieu N et al. SpOT-light: lightweight private set intersection from sparse OT extension. In: Boldyreva A and Micciancio D (eds.). CRYPTO 2019, Part III, volume 11694 of LNCS. Heidelberg: Springer, 2019, 401–31. [Google Scholar]
  82. Pinkas B, Rosulek M and Trieu N et al. PSI from PaXoS: fast, malicious private set intersection. In: Canteaut A and Ishai Y (eds.). EUROCRYPT 2020, Part II, volume 12106 of LNCS. Heidelberg: Springer, 2020, 739–67. [Google Scholar]
  83. Pinkas B, Schneider T and Tkachenko O et al. Efficient circuit-based PSI with linear communication. In: Ishai Y and Rijmen V (eds.). EUROCRYPT 2019, Part III, volume 11478 of LNCS. Heidelberg: Springer, 2019, 122–53. [Google Scholar]
  84. Pinkas B, Schneider T and Weinert C et al. Efficient circuit-based PSI via cuckoo hashing. In: Nielsen JB and Rijmen V (eds.). EUROCRYPT 2018, Part III, volume 10822 of LNCS. Heidelberg: Springer, 2018, 125–57. [Google Scholar]
  85. Rindal P and Schoppmann P. VOLE-PSI: fast OPRF and Circuit-PSI from Vector-OLE. In: Canteaut A and Standaert F-X (eds.). Advances in Cryptology - EUROCRYPT 2021, volume 12697 of LNCS. Springer International Publishing, 2021, 901–30. [CrossRef] [Google Scholar]
  86. Cleve R. Limits on the security of coin flips when half the processors are faulty (extended abstract). In: 18th ACM STOC. ACM Press, 1986, 364–69. [Google Scholar]
  87. Araki T, Furukawa J and Lindell Y et al. High-throughput semi-honest secure three-party computation with an honest majority. In: Weippl ER, Katzenbeisser S, Kruegel C, Myers AC and Halevi S (eds.). ACM CCS 2016. ACM Press, 2016, 805–17. [Google Scholar]
  88. Lindell Y. Secure multiparty computation. Commun ACM 2020; 64: 86–96. [Google Scholar]
  89. Orsini E. Efficient, actively secure MPC with a dishonest majority: a survey. In: Bajard JC and Topuzoğlu A (eds.). International Workshop on the Arithmetic of Finite Fields - WAIFI 2020, volume 12542 of LNCS. Springer International Publishing, 2021, 42–71. [Google Scholar]
  90. Canetti R. Universally composable security: A new paradigm for cryptographic protocols. In: 42nd FOCS. IEEE IEEE Computer Society Press, 2001, 136–145. [Google Scholar]
  91. Goldreich O. Foundations of Cryptography: Volume 2 - Basic Applications. Cambridge University Press, 2004. [Google Scholar]
  92. Canetti C. Security and composition of multiparty cryptographic protocols. J Cryptol 2000; 13: 143–202. [Google Scholar]
  93. Kushilevitz E, Lindell Y and Rabin T. Information-theoretically secure protocols and security under composition. In: Kleinberg JM (ed.). 38th ACM STOC. ACM Press, May 2006, 109–18. [Google Scholar]
  94. Goldwasser S and Lindell Y. Secure multi-party computation without agreement. J Cryptol 2005; 18: 247–87. [Google Scholar]
  95. Even S, Goldreich O and Lempel A. A randomized protocol for signing contracts. Commun ACM 1985; 28: 637–47. [Google Scholar]
  96. Rabin MO. How to Exchange Secrets by Oblivious Transfer. Technical Report TR-81, Aiken Computation Laboratory, Harvard University, 1981. [Google Scholar]
  97. Naor M and Pinkas B. Oblivious transfer and polynomial evaluation. In: 31st ACM STOC. ACM Press, 1999, 245–54. [Google Scholar]
  98. Shamir A. How to share a secret. Commun ACM 1979; 22: 612–3. [Google Scholar]
  99. Cramer R, Damgård I and Ishai Y. Share conversion, pseudorandom secret-sharing and applications to secure computation. In: Kilian J (ed.). TCC 2005, volume 3378 of LNCS. Heidelberg: Springer, 2005, 342–62. [Google Scholar]
  100. Ito M, Saito A and Nishizeki T. Secret sharing scheme realizing general access structure. Electron Commun Jpn III 1989; 72: 56–64. [Google Scholar]
  101. Lindell Y and Nof A. A framework for constructing fast MPC over arithmetic circuits with malicious adversaries and an honest-majority. In: Thuraisingham BM, Evans D, Malkin T and Xu D (eds.). ACM CCS 2017. ACM Press, 2017, 259–76. [Google Scholar]
  102. Dessouky G, Koushanfar F and Sadeghi A-R et al. Pushing the communication barrier in secure computation using lookup tables. In: NDSS 2017. The Internet Society, 2017. [Google Scholar]
  103. Damg˚ard I, Pastro V, Smart NP and Zakarias S. Multiparty computation from somewhat homomorphic encryption. In: Safavi-Naini R and Canetti R (eds.). CRYPTO 2012, volume 7417 of LNCS. Heidelberg: Springer, 2012, 643–62. [Google Scholar]
  104. Nielsen JB, Nordholt PS and Orlandi C et al. A new approach to practical active-secure two-party computation. In: Safavi-Naini R and Canetti R (eds.). CRYPTO 2012, volume 7417 of LNCS. Heidelberg: Springer, 2012, 681–700. [Google Scholar]
  105. Bendlin R, Damg˚ard I and Orlandi C et al. Semi-homomorphic encryption and multiparty computation. In: Paterson KG (ed.). EUROCRYPT 2011, volume 6632 of LNCS. Heidelberg: Springer, 2011, 169–88 [Google Scholar]
  106. Hazay C, Scholl P and Soria-Vazquez E. Low cost constant round MPC combining BMR and oblivious transfer. In: Takagi T and Peyrin T (eds.). ASIACRYPT 2017, Part I, volume 10624 of LNCS. Heidelberg: Springer, 2017, 598–628. [Google Scholar]
  107. Katz J, Ranellucci S and Rosulek M et al. Optimizing authenticated garbling for faster secure two-party computation. In: Shacham H and Boldyreva A (eds.). CRYPTO 2018, Part III, volume 10993 of LNCS. Heidelberg: Springer, 2018, 365–91. [Google Scholar]
  108. Wang X, Ranellucci S and Katz J. Authenticated garbling and efficient maliciously secure two-party computation. In: Thuraisingham BM, Evans D, Malkin T and Xu D (eds.). ACM CCS 2017. ACM Press, 2017, 21–37. [Google Scholar]
  109. Wang X, Ranellucci S and Katz J. Global-scale secure multiparty computation. In: Thuraisingham BM, Evans D, Malkin T and Xu D (eds.). ACM CCS 2017. ACM Press, 2017, 39–56. [Google Scholar]
  110. Yang K, Wang X and Zhang J. More efficient MPC from improved triple generation and authenticated garbling. In: Ligatti J, Ou X, Katz J and Vigna G (eds.). ACM CCS 20. ACM Press, 2020, 1627–46. [CrossRef] [Google Scholar]
  111. Zhu R, Cassel D and Sabry A et al. NANOPI: extreme-scale actively-secure multi-party computation. In: Lie D, Mannan M, Backes M and Wang XF (eds.). ACM CCS 2018. ACM Press, 2018, 862–79. [Google Scholar]
  112. Damg˚ard I, Nielsen JB, Nielsen M and Ranellucci S. The TinyTable protocol for 2-party secure computation, or: Gatescrambling revisited. In: Katz J and Shacham H (eds.). CRYPTO 2017, Part I, volume 10401 of LNCS. Heidelberg: Springer, 2017, 167–87. [Google Scholar]
  113. Asharov G, Lindell Y and Schneider T et al. More efficient oblivious transfer and extensions for faster secure computation. In: Sadeghi A-R, Gligor VD, Yung M (eds.). ACM CCS 2013. ACM Press, 2013, 535–48. [Google Scholar]
  114. Hazay C, Orsini E and Scholl P et al. TinyKeys: A new approach to efficient multi-party computation. In: Shacham H and Boldyreva A (eds.). CRYPTO 2018, Part III, volume 10993 of LNCS. Heidelberg: Springer, 2018, 3–33. [Google Scholar]
  115. Schneider T and Zohner M. GMW vs. Yao? Efficient secure two-party computation with low depth circuits. In: Sadeghi A-R (ed.). FC 2013, volume 7859 of LNCS. Heidelberg: Springer, 2013, 275–92. [Google Scholar]
  116. Damg˚ard I and Nielsen JB. Scalable and unconditionally secure multiparty computation. In: Menezes A (ed.). CRYPTO 2007, volume 4622 of LNCS. Heidelberg: Springer, 2007, 572–90. [Google Scholar]
  117. Gennaro R, Rabin MO and Rabin T. Simplified VSS and fast-track multiparty computations with applications to threshold cryptography. In: Coan BA and Afek Y (eds.). 17th ACM PODC. ACM, 1998, 101–111. [Google Scholar]
  118. Goyal V, Li H and Ostrovsky R et al. ATLAS: Efficient and scalable MPC in the honest majority setting. In: Advances in Cryptology – CRYPTO 2021. Springer, 2021. [Google Scholar]
  119. Goyal V and Song Y. Malicious security comes free in honest-majority MPC. Cryptology ePrint Archive, Report 2020/134, 2020. https://eprint.iacr.org/2020/134. [Google Scholar]
  120. Genkin D, Ishai Y and Prabhakaran M et al. Circuits resilient to additive attacks with applications to secure computation. In: Shmoys DB (ed.). 46th ACM STOC. ACM Press, 2014, 495–504. [Google Scholar]
  121. Beaver D. Efficient multiparty protocols using circuit randomization. In: Feigenbaum J (ed.). CRYPTO’91, volume 576 of LNCS. Heidelberg: Springer, 1992, 420–32. [Google Scholar]
  122. Beerliov´a-Trub´ıniov´a Z and Hirt M. Perfectly-secure MPC with linear communication complexity. In: Canetti R (ed.). TCC 2008, volume 4948 of LNCS. Heidelberg: Springer, 2008, 213–30 [Google Scholar]
  123. Lindell Y, Oxman E and Pinkas B. The IPS compiler: optimizations, variants and concrete efficiency. In: Rogaway P (ed.). CRYPTO 2011, volume 6841 of LNCS. Heidelberg: Springer, 2011, 259–76. [Google Scholar]
  124. Boneh D, Boyle E and Corrigan-Gibbs H et al. Zero-knowledge proofs on secret-shared data via fully linear PCPs. In: Boldyreva A and Micciancio D (eds.). CRYPTO 2019, Part III, volume 11694 of LNCS. Heidelberg: Springer, 2019, 67–97. [Google Scholar]
  125. Boyle E, Gilboa N and Ishai Y et al. Efficient fully secure computation via distributed zero-knowledge proofs. In: Advances in Cryptology – ASIACRYPT 2020, volume 12493 of LNCS. Springer International Publishing, 2020, 244–76. [CrossRef] [Google Scholar]
  126. Dalskov A, Escudero D and Keller M. Fantastic four: Honest-majority four-party secure computation with malicious security. Cryptology ePrint Archive, Report 2020/1330, 2020. https://eprint.iacr.org/2020/1330. [Google Scholar]
  127. Abspoel M, Cramer R and Damg˚ard I et al. Efficient information-theoretic secure multiparty computation over ℤ/pk via galois rings. In: Hofheinz D and Rosen R (eds.). TCC 2019, Part I, volume 11891 of LNCS. Heidelberg: Springer, 2019, 471–501. [Google Scholar]
  128. Mouchet C, Troncoso-Pastoriza J and Bossuat J-P et al. Multiparty Homomorphic Encryption from Ring-learningwith- errors. Cryptology ePrint Archive, Report 2020/304, 2020. https://ia.cr/2020/304. [Google Scholar]
  129. Ben-Efraim A, Nielsen M and Omri E. Turbospeedz: Double your online SPDZ! Improving SPDZ using function dependent preprocessing. In: Deng RH, Gauthier-Uma˜na V, Ochoa M and Yung M (eds.). ACNS 19, volume 11464 of LNCS. Heidelberg: Springer, 2019, 530–49. [Google Scholar]
  130. Ishai Y, Kilian J and Nissim K et al. Extending oblivious transfers efficiently. In: Boneh D (ed.). CRYPTO 2003, volume 2729 of LNCS. Heidelberg: Springer, August 2003, 145–61. [Google Scholar]
  131. Hazay C, Orsini E and Scholl P et al. Concretely efficient large-scale MPC with active security (or, TinyKeys for TinyOT). In: Peyrin T and Galbraith S (eds.). ASIACRYPT 2018, Part III, volume 11274 of LNCS. Heidelberg: Springer, 2018, 86–117. [Google Scholar]
  132. Boyle E, Couteau G and Gilboa N et al. Efficient two-round OT extension and silent non-interactive secure computation. In: Cavallaro L, Kinder J, Wang X F and Katz J (eds.). ACM CCS 2019. ACM Press, 2019, 291–308. [Google Scholar]
  133. Rindal P, Raghuraman S and Couteau G. Silver: silent VOLE and oblivious transfer from hardness of decoding structured LDPC codes. In: Advances in Cryptology – CRYPTO 2021, volume 12827 of LNCS. Springer International Publishing, 2021, 502–34. [Google Scholar]
  134. Yang K, Weng C, Lan X and et al. Ferret: fast extension for correlated OT with small communication. In: Ligatti J, Ou X, Katz J and Vigna G (eds.). ACM CCS 20. ACM Press, 2020, 1607–26. [CrossRef] [Google Scholar]
  135. Asharov G, Lindell Y and Schneider T et al. More efficient oblivious transfer extensions with security for malicious adversaries. In: Oswald E and Fischlin M (eds.). EUROCRYPT 2015, Part I, volume 9056 of LNCS. Heidelberg: Springer, 2015, 673–701. [Google Scholar]
  136. Keller M, Orsini E and Scholl P. Actively secure OT extension with optimal overhead. In: Gennaro R and Robshaw MJB (eds.). CRYPTO 2015, Part I, volume 9215 of LNCS. Heidelberg: Springer, 2015, 724–41. [Google Scholar]
  137. Goyal V, Song Y and Zhu C. Guaranteed output delivery comes free in honest majority MPC. In: Micciancio D and Ristenpart T (eds.). CRYPTO 2020, Part II, volume 12171 of LNCS. Heidelberg: Springer, 2020, 618–46. [Google Scholar]
  138. Chida K, Genkin D and Hamada K et al. Fast large-scale honest-majority MPC for malicious adversaries. In: Shacham H and Boldyreva A (eds.). CRYPTO 2018, Part III, volume 10993 of LNCS. Heidelberg: Springer, 2018, 34–64. [Google Scholar]
  139. Furukawa J and Lindell Y. Two-thirds honest-majority MPC for malicious adversaries at almost the cost of semihonest. In: Cavallaro L, Kinder J, Wang XF and Katz J (eds.). ACM CCS 2019. ACM Press, 2019, 1557–71. [Google Scholar]
  140. Nordholt PS and Veeningen M. Minimising communication in honest-majority MPC by batchwise multiplication verification. In: Preneel B and Vercauteren F (eds.). ACNS 18, volume 10892 of LNCS. Heidelberg: Springer, 2018, 321–39. [Google Scholar]
  141. Abspoel M, Cramer R and Escudero D et al. Improved single-round secure multiplication using regenerating codes. Cryptology ePrint Archive, Report 2021/253, 2021. https://eprint.iacr.org/2021/253. [Google Scholar]
  142. Guruswami V and Wootters M. Repairing Reed-Solomon codes. In: Wichs D and Mansour Y (eds.). 48th ACM STOC. ACM Press, 2016, 216–26. [Google Scholar]
  143. Keller M, Rotaru D and Smart NP et al. Reducing communication channels in MPC. In: Catalano D and De Prisco R (eds.). SCN 18, volume 11035 of LNCS. Heidelberg: Springer, 2018, 181–99. [Google Scholar]
  144. Smart NP and Wood T. Error detection in monotone span programs with application to communication-efficient multi-party computation. In: Matsui M (ed.). CT-RSA 2019, volume 11405 of LNCS. Heidelberg: Springer, 2019, 210–29. [Google Scholar]
  145. Ishai Y, Prabhakaran M and Sahai A. Founding cryptography on oblivious transfer – efficiently. In: Wagner D (ed.). CRYPTO 2008, volume 5157 of LNCS. Heidelberg: Springer, 2008, 572–91. [Google Scholar]
  146. Hazay C, Ishai Y and Marcedone A et al. LevioSA: Lightweight secure arithmetic computation. In: Cavallaro L, Kinder J, Wang XF and Katz J (eds.). ACM CCS 2019. ACM Press, 2019, 327–44. [Google Scholar]
  147. Hazay C, Venkitasubramaniam M and Weiss M. The price of active security in cryptographic protocols. In: Canteaut A and Ishai Y (eds.). EUROCRYPT 2020, Part II, volume 12106 of LNCS. Heidelberg: Springer, 2020, 184–215. [Google Scholar]
  148. Chen H and Cramer R. Algebraic geometric secret sharing schemes and secure multi-party computations over small fields. In: Dwork C (ed.). CRYPTO 2006, volume 4117 of LNCS. Heidelberg: Springer, 2006, 521–536. [Google Scholar]
  149. Damg˚ard I, Keller M and Larraia E et al. Practical covertly secure MPC for dishonest majority – or: Breaking the SPDZ limits. In: Crampton J, Jajodia S and Mayes K (eds.). ESORICS 2013, volume 8134 of LNCS. Heidelberg: Springer, 2013, 1–18. [Google Scholar]
  150. Gilboa N. Two party RSA key generation. In: Wiener MJ (ed.). CRYPTO’99, volume 1666 of LNCS. Heidelberg: Springer, 1999, 116–29. [Google Scholar]
  151. Brakerski Z, Gentry C and Vaikuntanathan V. (Leveled) fully homomorphic encryption without bootstrapping. In: Goldwasser S (ed.). ITCS 2012. ACM, 2012, 309–325. [Google Scholar]
  152. Keller M, Pastro V and Rotaru D. Overdrive: making SPDZ great again. In: Nielsen JB and Rijmen V (eds.). EUROCRYPT 2018, Part III, volume 10822 of LNCS. Heidelberg: Springer, 2018, 158–89. [Google Scholar]
  153. Baum C, Cozzo D and Smart NP. Using TopGear in overdrive: A more efficient ZKPoK for SPDZ. In: Paterson KG and Stebila D (eds.). SAC 2019, volume 11959 of LNCS. Heidelberg: Springer, 2019, 274–302. [Google Scholar]
  154. Chen H, Kim M and Razenshteyn I et al. Maliciously secure matrix multiplication with applications to private deep learning. Cryptology ePrint Archive, Report 2020/451, 2020. https://eprint.iacr.org/2020/451. [Google Scholar]
  155. Brakerski Z. Fully homomorphic encryption without modulus switching from classical GapSVP. In: Safavi-Naini R and Canetti R (eds.). CRYPTO 2012, volume 7417 of LNCS. Heidelberg: Springer, 2012, 868–86. [Google Scholar]
  156. Fan J and Vercauteren F. Somewhat practical fully homomorphic encryption. Cryptology ePrint Archive, Report 2012/144, 2012. http://eprint.iacr.org/2012/144. [Google Scholar]
  157. Cramer R, Damg˚ard I and Escudero D et al. SPD 2k : Efficient MPC mod 2k for dishonest majority. In: Shacham H and Boldyreva A (eds.). CRYPTO 2018, Part II, volume 10992 of LNCS. Heidelberg: Springer, 2018, 769–98. [Google Scholar]
  158. Damg˚ard I, Escudero D and Frederiksen TK et al. New primitives for actively-secure MPC over rings with applications to private machine learning. In: 2019 IEEE Symposium on Security and Privacy. IEEE Computer Society Press, 2019, 1102–20. [CrossRef] [Google Scholar]
  159. Catalano D, Di Raimondo M and Fiore D et al. Monℤ2k a: Fast maliciously secure two party computation on ℤ2k . In: Kiayias A, Kohlweiss M, Wallden P and Zikas V (eds.). PKC 2020, Part II, volume 12111 of LNCS. Heidelberg: Springer, 2020, 357–86. [Google Scholar]
  160. Orsini E, Smart NP and Vercauteren F. Overdrive2k: efficient secure MPC over ℤ2k from somewhat homomorphic encryption. In: Jarecki S (ed.). CT-RSA 2020, volume 12006 of LNCS. Heidelberg: Springer, 2020, 254–83. [Google Scholar]
  161. Boyle E, Couteau G and Gilboa N et al. Efficient pseudorandom correlation generators from ring-LPN. In: Micciancio D and Ristenpart T (eds.). CRYPTO 2020, Part II, volume 12171 of LNCS. Heidelberg: Springer, 2020, 387–416. [Google Scholar]
  162. Boyle E, Couteau G and Gilboa N et al. Efficient pseudorandom correlation generators: Silent OT extension and more. In: Boldyreva A and Micciancio D (eds.). CRYPTO 2019, Part III, volume 11694 of LNCS. Heidelberg: Springer, 2019, 489–518. [Google Scholar]
  163. Boyle E, Gilboa N and Ishai Y. Function secret sharing. In: Oswald E and Fischlin M (eds.). EUROCRYPT 2015, Part II, volume 9057 of LNCS. Heidelberg: Springer, 2015, 337–367. [Google Scholar]
  164. Frederiksen TK, Keller M and Orsini E et al. A unified approach to MPC with preprocessing using OT. In: Iwata T and Cheon JH (eds.). ASIACRYPT 2015, Part I, volume 9452 of LNCS. Heidelberg: Springer, 2015, 711–35. [Google Scholar]
  165. Larraia E, Orsini E and Smart N P. Dishonest majority multi-party computation for binary circuits. In: Garay JA and Gennaro R (eds.). CRYPTO 2014, Part II, volume 8617 of LNCS. Heidelberg: Springer, 2014, 495–512. [Google Scholar]
  166. Cascudo I, Gundersen J-S. A secret-sharing based MPC protocol for Boolean circuits with good amortized complexity. In: Theory of Cryptography, volume 12551 of LNCS. Springer International Publishing, 2020, 652–82. [CrossRef] [Google Scholar]
  167. Damg˚ard I, Lauritsen R and Toft T. An empirical study and some improvements of the MiniMac protocol for secure computation. In: Abdalla M and De Prisco R (eds.). SCN 14, volume 8642 of LNCS. Heidelberg: Springer, 2014, 398–415. [Google Scholar]
  168. Damg˚ard I and Zakarias S. Constant-overhead secure computation of Boolean circuits using preprocessing. In: Sahai A (ed.). TCC 2013, volume 7785 of LNCS. Heidelberg: Springer, 2013, 621–41. [Google Scholar]
  169. Frederiksen TK, Pinkas B and Yanai A. Committed MPC – maliciously secure multiparty computation from homomorphic commitments. In: Abdalla M and Dahab R (eds.). PKC 2018, Part I, volume 10769 of LNCS. Heidelberg: Springer, 2018, 587–619. [Google Scholar]
  170. Cascudo I, Cramer R and Xing C et al. Amortized complexity of information-theoretically secure MPC revisited. In: Shacham H and Boldyreva A (eds.). CRYPTO 2018, Part III, volume 10993 of LNCS. Heidelberg: Springer, 2018, 395–426. [Google Scholar]
  171. Couteau G. A note on the communication complexity of multiparty computation in the correlated randomness model. In: Ishai Y and Rijmen V (eds.). EUROCRYPT 2019, Part II, volume 11477 of LNCS. Heidelberg: Springer, 2019, 473–503. [Google Scholar]
  172. Keller M, Orsini E and Rotaru D et al. Faster secure multi-party computation of AES and DES using lookup tables. In: Gollmann D, Miyaji A and Kikuchi H (eds.). ACNS 17, volume 10355 of LNCS. Heidelberg: Springer, 2017, 229–49. [Google Scholar]
  173. Furukawa J, Lindell Y and Nof A et al. High-throughput secure three-party computation for malicious adversaries and an honest majority. In: Coron JS and Nielsen JB (eds.). EUROCRYPT 2017, Part II, volume 10211 of LNCS. Heidelberg: Springer, 2017, 225–55. [Google Scholar]
  174. Araki T, Barak A and Furukawa J et al. Optimized honest-majority MPC for malicious adversaries – Breaking the 1 billion-gate per second barrier. In: 2017 IEEE Symposium on Security and Privacy. IEEE Computer Society Press, 2017, 843–62. [CrossRef] [Google Scholar]
  175. Boyle E, Gilboa N and Ishai Y et al. Practical fully secure three-party computation via sublinear distributed zeroknowledge proofs. In: Cavallaro L, Kinder J, Wang XF and Katz J (eds.). ACM CCS 2019. ACM Press, 2019, 869–86. [Google Scholar]
  176. Ben-Sasson E, Fehr S and Ostrovsky R. Near-linear unconditionally-secure multiparty computation with a dishonest minority. In: Safavi-Naini R and Canetti R (eds.). CRYPTO 2012, volume 7417 of LNCS. Heidelberg: Springer, 2012, 663–80. [Google Scholar]
  177. Polychroniadou A and Song Y. Constant-overhead unconditionally secure multiparty computation over binary fields. In: Canteaut A and Standaert F-X (eds.). Advances in Cryptology – EUROCRYPT 2021, volume 12697 of LNCS. Springer International Publishing, 2021, 812–41. [CrossRef] [Google Scholar]
  178. Beck G, Goel A and Jain A et al. Order-C secure multiparty computation for highly repetitive circuits. In: Advances in Cryptology – EUROCRYPT 2021, volume 12697 of LNCS. Springer International Publishing, 2021, 663–93. [CrossRef] [Google Scholar]
  179. Gordon SD, Starin D and Yerukhimovich A. The more the merrier: Reducing the cost of large scale MPC. In: Advances in Cryptology – EUROCRYPT 2021, volume 12697 of LNCS. Springer International Publishing, 2021, 694–723. [CrossRef] [Google Scholar]
  180. Franklin MK and Yung M. Communication complexity of secure computation (extended abstract). In: 24th ACM STOC. ACM Press, 1992, 699–710. [Google Scholar]
  181. Damg˚ard I, Ishai Y and Krøigaard M. Perfectly secure multiparty computation and the computational overhead of cryptography. In: Gilbert H (ed.). EUROCRYPT 2010, volume 6110 of LNCS. Heidelberg: Springer, 2010, 445–65. [Google Scholar]
  182. Garay JA, Ishai Y and Ostrovsky R et al. The price of low communication in secure multi-party computation. In: Katz J and Shacham H (eds.). CRYPTO 2017, Part I, volume 10401 of LNCS. Heidelberg: Springer, 2017, 420–46. [Google Scholar]
  183. Genkin D, Ishai Y and Polychroniadou A. Efficient multi-party computation: From passive to active security via secure SIMD circuits. In: Gennaro R and Robshaw MJB (eds.). CRYPTO 2015, Part II, volume 9216 of LNCS. Heidelberg: Springer, 2015, 721–741. [Google Scholar]
  184. Goyal V, Polychroniadou A and Song Y. Unconditional communication-efficient MPC via Hall’s marriage theorem. Cryptology ePrint Archive, Report 2021/834, 2021. https://eprint.iacr.org/2021/834. [Google Scholar]
  185. Escudero D and Dalskov A. Honest majority MPC with abort with minimal online communication. Cryptology ePrint Archive, Report 2020/1556, 2020. https://eprint.iacr.org/2020/1556. [Google Scholar]
  186. Ashur T, Cohen E and Hazay C et al. A new framework for garbled circuits. Cryptology ePrint Archive, Report 2021/739, 2021. https://eprint.iacr.org/2021/739. [Google Scholar]
  187. Bellare M, Hoang VT and Rogaway P. Foundations of garbled circuits. In: Yu T, Danezis G and Gligor VD (eds.). ACM CCS 2012. ACM Press, 2012, 784–96. [CrossRef] [Google Scholar]
  188. Beaver D. Precomputing oblivious transfer. In: Coppersmith D (ed.). CRYPTO’95, volume 963 of LNCS. Heidelberg: Springer, 1995, 97–109. [Google Scholar]
  189. Huang Y, Evans D and Katz J et al. Faster secure two-party computation using garbled circuits. In: USENIX Security 2011. USENIX Association, 2011. [Google Scholar]
  190. Lindell Y and Pinkas B. A proof of security of Yao’s protocol for two-party computation. J Cryptol 2009; 22: 161–88. [Google Scholar]
  191. Malkhi D, Nisan N and Pinkas B et al. Fairplay – secure two-party computation system. In: Blaze M (ed.). USENIX Security 2004. USENIX Association, 2004, 287–302. [Google Scholar]
  192. Naor M, Pinkas B and Sumner R. Privacy preserving auctions and mechanism design. In: Proceedings of the 1st ACM Conference on Electronic Commerce – EC’99. New York, NY: ACM, 1999, 129–39. [Google Scholar]
  193. Pinkas B, Schneider T and Smart NP et al. Secure two-party computation is practical. In: Matsui M (ed.). ASIACRYPT 2009, volume 5912 of LNCS. Heidelberg: Springer, 2009, 250–67. [Google Scholar]
  194. Kolesnikov V and Schneider T. Improved garbled circuit: Free XOR gates and applications. In: Aceto L, Damg˚ard I, Goldberg LA, Halld´orsson MM, Ing´olfsd´ottir A and Walukiewicz I (eds.). ICALP 2008, Part II, volume 5126 of LNCS. Heidelberg: Springer, 2008, 486–498. [Google Scholar]
  195. Zahur S, Rosulek M and Evans D. Two halves make a whole – reducing data transfer in garbled circuits using half gates. In: Oswald E and Fischlin M (eds.). EUROCRYPT 2015, Part II, volume 9057 of LNCS. Heidelberg: Springer, 2015, 220–50. [Google Scholar]
  196. Choi SG, Katz J and Kumaresan R et al. On the security of the “free-XOR” technique. In: Cramer R (ed.). TCC 2012, volume 7194 of LNCS. Heidelberg: Springer, 2012, 39–53. [Google Scholar]
  197. Bellare M, Hoang VT and Keelveedhi S et al. Efficient garbling from a fixed-key blockcipher. In: IEEE Symposium on Security and Privacy. IEEE Computer Society Press, 2013, 478–92. [Google Scholar]
  198. Guo C, Katz J, Wang X and Yu Y. Efficient and secure multiparty computation from fixed-key block ciphers. In: 2020 IEEE Symposium on Security and Privacy. IEEE Computer Society Press, 2020, 825–41. [CrossRef] [Google Scholar]
  199. Rosulek M and Roy L. Three halves make a whole? Beating the half-gates lower bound for garbled circuits. In: Malkin T and Peikert C (eds.). Advances in Cryptology – CRYPTO 2021, volume 12825 of LNCS. Springer International Publishing, 2021, 94–124. [CrossRef] [Google Scholar]
  200. Kolesnikov V, Mohassel P and Rosulek M. FleXOR: Flexible garbling for XOR gates that beats free-XOR. In: Garay JA and Gennaro R (eds.). CRYPTO 2014, Part II, volume 8617 of LNCS. Heidelberg: Springer, 2014, 440–57. [Google Scholar]
  201. Gueron S, Lindell Y and Nof A et al. Fast garbling of circuits under standard assumptions. In: Ray I, Li N and Kruegel C (eds.). ACM CCS 2015. ACM Press, 2015, 567–78. [Google Scholar]
  202. Applebaum B, Ishai Y and Kushilevitz E. How to garble arithmetic circuits. In: Ostrovsky R (ed.). 52nd FOCS. IEEE Computer Society Press, 2011, 120–9. [Google Scholar]
  203. Ball M, Carmer B and Malkin T et al. Garbled neural networks are practical. Cryptology ePrint Archive, Report 2019/338, 2019. https://eprint.iacr.org/2019/338. [Google Scholar]
  204. Ball M, Malkin T and Rosulek M. Garbling gadgets for Boolean and arithmetic circuits. In: Weippl ER, Katzenbeisser S, Kruegel C, Myers AC and Halevi S (eds.). ACM CCS 2016. ACM Press, 2016, 565–77. [Google Scholar]
  205. Ben-Efraim A. On multiparty garbling of arithmetic circuits. In: Peyrin T and Galbraith S (eds.). ASIACRYPT 2018, Part III, volume 11274 of LNCS. Heidelberg: Springer, 2018, 3–33. [CrossRef] [Google Scholar]
  206. Ben-Efraim A, Lindell Y and Omri E. Optimizing semi-honest secure multiparty computation for the Internet. In: Weippl ER, Katzenbeisser S, Kruegel C, Myers AC and Halevi S (eds.). ACM CCS 2016. ACM Press, 2016, 578–90. [Google Scholar]
  207. Aner Ben-Efraim A, Lindell Y and Omri E. Efficient scalable constant-round MPC via garbled circuits. In: Takagi T and Peyrin T (eds.). ASIACRYPT 2017, Part II, volume 10625 of LNCS. Heidelberg: Springer, 2017, 471–98. [CrossRef] [Google Scholar]
  208. Ben-Efraim A, Cong K and Omri E et al. Large scale, actively secure computation from LPN and free-XOR garbled circuits. In: Advances in Cryptology – EUROCRYPT 2021, volume 12697 of LNCS. Springer International Publishing, 2021. [Google Scholar]
  209. Lindell Y and Pinkas B. An efficient protocol for secure two-party computation in the presence of malicious adversaries. In: Naor M (ed.). EUROCRYPT 2007, volume 4515 of LNCS. Heidelberg: Springer, 2007, 52–78. [CrossRef] [Google Scholar]
  210. Afshar A, Mohassel P and Pinkas B et al. Non-interactive secure computation based on cut-and-choose. In: Nguyen PQ and Oswald E (eds.). EUROCRYPT 2014, volume 8441 of LNCS. Heidelberg: Springer, 2014, 387–404. [CrossRef] [Google Scholar]
  211. Brandão LTAN. Secure two-party computation with reusable bit-commitments, via a cut-and-choose with forge-and-lose technique – (extended abstract). In: Sako K and Sarkar P (eds.). ASIACRYPT 2013, Part II, volume 8270 of LNCS. Heidelberg: Springer, 2013, 441–63. [Google Scholar]
  212. Frederiksen TK, Jakobsen TP and Nielsen JB. Faster maliciously secure two-party computation using the GPU. In: Abdalla M and De Prisco R (eds.). SCN 14, volume 8642 of LNCS. Heidelberg: Springer, 2014, 358–79. [Google Scholar]
  213. Huang Y, Katz J and Evans D. Efficient secure two-party computation using symmetric cut-and-choose. In: Canetti R and Garay JA (eds.). CRYPTO 2013, Part II, volume 8043 of LNCS. Heidelberg: Springer, 2013, 18–35. [CrossRef] [Google Scholar]
  214. Huang Y, Katz Y and Kolesnikov V et al. Amortizing garbled circuits. In: Garay JA and Gennaro R (eds.). CRYPTO 2014, Part II, volume 8617 of LNCS. Heidelberg: Springer, 2014, 458–75. [CrossRef] [Google Scholar]
  215. Kreuter B and Shen C-H. Billion-gate secure computation with malicious adversaries. In: Kohno T (ed.). USENIX Security 2012. USENIX Association, 2012, 285–300. [Google Scholar]
  216. Lindell Y. Fast cut-and-choose based protocols for malicious and covert adversaries. In: Canetti R and Garay J A (eds.). CRYPTO 2013, Part II, volume 8043 of LNCS. Heidelberg: Springer, 2013, 1–17. [Google Scholar]
  217. Lindell Y and Pinkas B. Secure two-party computation via cut-and-choose oblivious transfer. In: Yuval I (ed.). TCC 2011, volume 6597 of LNCS. Heidelberg: Springer, 2011, 329–46. [Google Scholar]
  218. Lindell Y and Riva B. Cut-and-choose Yao-based secure computation in the online/offline and batch settings. In: Garay JA and Gennaro R (eds.). CRYPTO 2014, Part II, volume 8617 of LNCS. Heidelberg: Springer, 2014, 476–494. [CrossRef] [Google Scholar]
  219. Lindell Y and Riva B. Blazing fast 2PC in the offline/online setting with security for malicious adversaries. In: Ray I, Li N and Kruegel C (eds.). ACM CCS 2015. ACM Press, 2015, 579–590. [Google Scholar]
  220. Nielsen JB and Orlandi C. Cross and clean: amortized garbled circuits with constant overhead. In: Hirt M and Smith AD (eds.). TCC 2016-B, Part I, volume 9985 of LNCS. Heidelberg: Springer, 2016, 582–603. [Google Scholar]
  221. Rindal P and Rosulek M. Faster malicious 2-party secure computation with online/offline dual execution. In: Holz T and Savage S (eds.). USENIX Security 2016. USENIX Association, 2016, 297–314. [Google Scholar]
  222. Shelat A and Shen C-H. Two-output secure computation with malicious adversaries. In: Paterson KG (ed.). EUROCRYPT 2011, volume 6632 of LNCS. Heidelberg: Springer, 2011, 386–405. [CrossRef] [Google Scholar]
  223. Shelat A and Shen C-H. Fast two-party secure computation with minimal assumptions. In: Sadeghi A-R, Gligor VD and Yung M (eds.). ACM CCS 2013. ACM Press, 2013, 523–34. [Google Scholar]
  224. Wang X, Malozemoff AJ and Katz J. Faster secure two-party computation in the single-execution setting. In: Coron J-S and Nielsen J-B (eds.). EUROCRYPT 2017, Part III, volume 10212 of LNCS. Heidelberg: Springer, 2017, 399–424. [CrossRef] [Google Scholar]
  225. Nielsen JB and Orlandi C. LEGO for two-party secure computation. In: Reingold O (ed.). TCC 2009, volume 5444 of LNCS. Heidelberg: Springer, 2009, 368–86. [Google Scholar]
  226. Frederiksen TK, Jakobsen TP and Nielsen JB et al. TinyLEGO: An interactive garbling scheme for maliciously secure two-party computation. Cryptology ePrint Archive, Report 2015/309, 2015. http://eprint.iacr.org/2015/309. [Google Scholar]
  227. Frederiksen TK, Jakobsen TP and Nielsen JB et al. MiniLEGO: Efficient secure two-party computation from general assumptions. In: Johansson T and Nguyen PQ (eds.). EUROCRYPT 2013, volume 7881 of LNCS. Heidelberg: Springer, 2013, 537–56. [CrossRef] [Google Scholar]
  228. Huang Y and Zhu R. Revisiting LEGOs: Optimizations, analysis, and their limit. Cryptology ePrint Archive, Report 2015/1038, 2015. http://eprint.iacr.org/2015/1038. [Google Scholar]
  229. Kolesnikov V, Nielsen JB and Rosulek M et al. DUPLO: Unifying cut-and-choose for garbled circuits. In: Thuraisingham BM, Evans D, Malkin T and Xu D (eds.). ACM CCS 2017. ACM Press, 2017, 3–20. [Google Scholar]
  230. Nielsen J B, Schneider T and Trifiletti R. Constant round maliciously secure 2PC with function-independent preprocessing using LEGO. In: NDSS 2017. The Internet Society, 2017. [Google Scholar]
  231. Zhu R and Huang Y. JIMU: faster LEGO-based secure computation using additive homomorphic hashes. In: Takagi T and Peyrin T (eds.). ASIACRYPT 2017, Part II, volume 10625 of LNCS. Heidelberg: Springer, 2017, 529–72. [CrossRef] [Google Scholar]
  232. Choi SG, Katz J and Malozemoff AJ et al. Efficient three-party computation from cut-and-choose. In: Garay JA and Gennaro R (eds.). CRYPTO 2014, Part II, volume 8617 of LNCS. Heidelberg: Springer, 2014, 513–30. [CrossRef] [Google Scholar]
  233. Lindell Y, Pinkas B and Smart NP et al. Efficient constant round multi-party computation combining BMR and SPDZ. In: Gennaro R and Robshaw MJB (eds.). CRYPTO 2015, Part II, volume 9216 of LNCS. Heidelberg: Springer, 2015, 319–338. [CrossRef] [Google Scholar]
  234. Lindell Y, Smart NP and Soria-Vazquez E. More efficient constant-round multi-party computation from BMR and SHE. In: Hirt M and Smith AD (eds.). TCC 2016-B, Part I, volume 9985 of LNCS. Heidelberg: Springer, 2016, 554–81. [Google Scholar]
  235. Poddar R, Kalra S and Yanai A et al. Senate: a maliciously-secure MPC platform for collaborative analytics. In: 30th USENIX Security Symposium (USENIX Security 21). USENIX Association, 2021, 2129–46. [Google Scholar]
  236. Byali M, Joseph A and Patra A et al. Fast secure computation for small population over the Internet. In: Lie D, Mannan M, Backes M and Wang XF (eds.). ACM CCS 2018. ACM Press, 2018, 677–694. [Google Scholar]
  237. Chandran N, Garay JA and Mohassel P et al. Efficient, constant-round and actively secure MPC: Beyond the three-party case. In: Thuraisingham BM, Evans D, Malkin T, Xu D (eds.). ACM CCS 2017. ACM Press, 2017, 277–294. [Google Scholar]
  238. Ishai Y, Kumaresan R and Kushilevitz E et al. Secure computation with minimal interaction, revisited. In: Gennaro R and Robshaw MJB (eds.). CRYPTO 2015, Part II, volume 9216 of LNCS. Heidelberg: Springer, 2015, 359–78. [CrossRef] [Google Scholar]
  239. Mohassel P, Rosulek M and Zhang Y. Fast and secure three-party computation: the garbled circuit approach. In: Ray I, Li N and Kruegel C (eds.). ACM CCS 2015. ACM Press, 2015, 591–602. [Google Scholar]
  240. Byali M, Hazay C and Patra A et al. Fast actively secure five-party computation with security beyond abort. In: Cavallaro L, Kinder J, Wang XF and Katz J (eds.). ACM CCS 2019. ACM Press, 2019, 1573–1590. [Google Scholar]
  241. Canetti R, Sarkar P and Wang X. Blazing fast OT for three-round UC OT extension. In: Kiayias A, Kohlweiss M, Wallden P and Zikas V (eds.). PKC 2020, Part II, volume 12111 of LNCS. Heidelberg: Springer, 2020, 299–327. [Google Scholar]
  242. Masny D and Rindal P. Endemic oblivious transfer. In: Cavallaro L, Kinder J, Wang XF and Katz J (eds.). ACM CCS 2019. ACM Press, 2019, 309–326. [Google Scholar]
  243. McQuoid I, Rosulek M and Roy L. Minimal symmetric PAKE and 1-out-of-N OT from programmable-once public functions. In: Ligatti J, Ou X, Katz J and Vigna G (eds.). ACM CCS 20. ACM Press, 2020, 425–42. [CrossRef] [Google Scholar]
  244. McQuoid I, Rosulek M and Roy L. Batching Base Oblivious Transfers. Cryptology ePrint Archive, Report 2021/682, 2021. https://eprint.iacr.org/2021/682. [Google Scholar]
  245. Peikert C, Vaikuntanathan V and Waters B. A framework for efficient and composable oblivious transfer. In: Wagner D (ed.). CRYPTO 2008, volume 5157 of LNCS. Heidelberg: Springer, 2008, 554–71. [CrossRef] [Google Scholar]
  246. Chou T and Orlandi C. The simplest protocol for oblivious transfer. In: Progress in Cryptology – LATINCRYPT 2015, volume 9230 of LNCS. Springer International Publishing, 2015, 40–58. [Google Scholar]
  247. Döttling N, Garg S and Hajiabadi M et al. Two-round oblivious transfer from CDH or LPN. In: Canteaut A and Ishai Y (eds.). EUROCRYPT 2020, Part II, volume 12106 of LNCS. Heidelberg: Springer, 2020, 768–97. [CrossRef] [Google Scholar]
  248. Naor M and Pinkas B. Efficient oblivious transfer protocols. In: Kosaraju SR (ed.). In: 12th SODA. ACM-SIAM, 2001, 448–57. [Google Scholar]
  249. Branco P, Ding J and Goulão M et al. A framework for universally composable oblivious transfer from one-round key-exchange. In: Albrecht M (ed.). IMA International Conference on Cryptography and Coding – IMACC 2019, volume 11929 of LNCS. Springer International Publishing, 2019, 78–101. [Google Scholar]
  250. David B and Dowsley R. Efficient composable oblivious transfer from CDH in the global random oracle model. Cryptology ePrint Archive, Report 2020/1291, 2020. https://eprint.iacr.org/2020/1291. [Google Scholar]
  251. Quach W. UC-secure OT from LWE, Revisited. Cryptology ePrint Archive, Report 2020/819, 2020. https://eprint.iacr.org/2020/819. [Google Scholar]
  252. Lai YF, Galbraith SD and de Saint Guilhem CD. Compact, Efficient and UC-secure Isogeny-based Oblivious Transfer. Cryptology ePrint Archive, Report 2020/1012. 2020. https://eprint.iacr.org/2020/1012. [Google Scholar]
  253. Beaver D. Correlated pseudorandomness and the complexity of private computations. In: 28th ACM STOC. ACM Press, 1996, 479–488. [Google Scholar]
  254. Boyle E, Couteau G and Gilboa N et al. Compressing vector OLE. In: Lie D, Mannan M, Backes M and Wang XF (eds.). ACM CCS 2018. ACM Press, 2018, 896–912. [Google Scholar]
  255. Blum A, Furst ML and Kearns MJ et al. Cryptographic primitives based on hard learning problems. In: Stinson DR (ed.). CRYPTO’93, volume 773 of LNCS. Heidelberg: Springer, 1994, 278–91. [Google Scholar]
  256. Boyle E, Couteau G and Gilboa N et al. Correlated pseudorandom functions from variable-density LPN. Cryptology ePrint Archive, Report 2020/1417, 2020. https://eprint.iacr.org/2020/1417. [Google Scholar]
  257. Goldreich O, Goldwasser S and Micali S. How to construct random functions. J ACM 1986; 33:792–807. [Google Scholar]
  258. Boneh D and Waters B. Constrained pseudorandom functions and their applications. In: Sako K and Sarkar P (eds.). ASIACRYPT 2013, Part II, volume 8270 of LNCS. Heidelberg: Springer, 2013, 280–300. [Google Scholar]
  259. Kiayias A, Papadopoulos S and Triandopoulos N et al. Delegatable pseudorandom functions and applications. In: Sadeghi A-R, Gligor VD and Yung M (eds.). ACM CCS 2013. ACM Press, 2013, 669–84. [Google Scholar]
  260. Schoppmann P, Gascón A and Reichert L et al. Distributed vector-OLE: Improved constructions and implementation. In: Cavallaro L, Kinder J, Wang XF, Katz J (eds.). ACM CCS 2019. ACM Press, 2019, 1055–72. [Google Scholar]
  261. Augot D, Finiasz M and Sendrier N. A fast provably secure cryptographic hash function. Cryptology ePrint Archive, Report 2003/230, 2003. http://eprint.iacr.org/2003/230. [Google Scholar]
  262. Applebaum B, Damgård I and Ishai Y et al. Secure arithmetic computation with constant computational overhead. In: Katz J, Shacham H (eds.). CRYPTO 2017, Part I, volume 10401 of LNCS. Heidelberg: Springer, 2017, 223–54. [CrossRef] [Google Scholar]
  263. Döttling N, Ghosh S and Nielsen JB et al. TinyOLE: Efficient actively secure two-party computation from oblivious linear function evaluation. In: Thuraisingham BM, Evans D, Malkin T and Xu D (eds.). ACM CCS 2017. ACM Press, 2017, 2263–76. [Google Scholar]
  264. Ishai Y, Prabhakaran M and Sahai A. Secure arithmetic computation with no honest majority. Theory of Cryptography, volume 5444 of LNCS. Berlin, Heidelberg: Springer, 2009. 294–314. [Google Scholar]
  265. De Castro L, Juvekar C and Vaikuntanathan V. Fast vector oblivious linear evaluation from ring learning with errors. Cryptology ePrint Archive, Report 2020/685, 2020. https://eprint.iacr.org/2020/685. [Google Scholar]
  266. Baum C, Escudero D and Pedrouzo-Ulloa A et al. Efficient protocols for oblivious linear function evaluation from ring – LWE. In: Galdi C and Kolesnikov V (eds.). SCN 20, volume 12238 of LNCS. Heidelberg: Springer, 2020, 130–49. [Google Scholar]
  267. Branco P, Döttling N and Mateus P. Two-round oblivious linear evaluation from learning with errors. Cryptology ePrint Archive, Report 2020/635, 2020. https://eprint.iacr.org/2020/635. [Google Scholar]
  268. Ghosh S, Nielsen JB and Nilges T. Maliciously secure oblivious linear function evaluation with constant overhead. In: Takagi T and Peyrin T (eds.). ASIACRYPT 2017, art I, volume 10624 of LNCS. Heidelberg: Springer, 2017, 629–59. [CrossRef] [Google Scholar]
  269. Chase M, Dodis Y and Ishai Y et al. Reusable non-interactive secure computation. In: Boldyreva A and Micciancio D (eds.). CRYPTO 2019, Part III, volume 11694 of LNCS. Heidelberg: Springer, 2019, 462–488. [CrossRef] [Google Scholar]
  270. Abspoel M, Escudero D and Volgushev N. Secure training of decision trees with continuous attributes. Proc Priv Enhancing Technol 2020; 2021:167–87. [Google Scholar]
  271. Adams S, Choudhary C and De Cock M et al. Privacy-preserving training of tree ensembles over continuous data. Cryptology ePrint Archive, Report 2021/754, 2021. https://eprint.iacr.org/2021/754. [Google Scholar]
  272. Attrapadung N, Hamada K and Ikarashi D et al. Adam in private: Secure and fast training of deep neural networks with adaptive moment estimation. Cryptology ePrint Archive, Report 2021/736, 2021. https://eprint.iacr.org/2021/736. [Google Scholar]
  273. Braun L, Demmler D and Schneider T et al. MOTION – A framework for mixed-protocol multi-party computation. Cryptology ePrint Archive, Report 2020/1137, 2020. https://eprint.iacr.org/2020/1137. [Google Scholar]
  274. Knott B, Venkataraman S and Hannun A et al. CrypTen: secure multi-party computation meets machine learning. In: Proceedings of the NeurIPS Workshop on Privacy-Preserving Machine Learning, 2020. [Google Scholar]
  275. Nikolaenko V, Weinsberg U and Ioannidis S et al. Privacy-preserving ridge regression on hundreds of millions of records. In: 2013 IEEE Symposium on Security and Privacy. IEEE Computer Society Press, 2013, 334–48. [CrossRef] [Google Scholar]
  276. Wang Q, Ma Q and Li J et al. Enable Dynamic Parameters Combination to Boost Linear Convolutional Neural Network for Sensitive Data Inference. Cryptology ePrint Archive, Report 2020/961, 2020. https://eprint.iacr.org/2020/961. [Google Scholar]
  277. Liu J, Juuti M and Lu Y et al. Oblivious neural network predictions via MiniONN transformations. In: Thuraisingham BM, Evans D, Malkin T and Xu D (eds.). ACM CCS 2017. ACM Press, 2017, 619–31. [Google Scholar]
  278. Chandran N, Gupta D and Rastogi A et al. EzPC: Programmable and efficient secure two-party computation for machine learning. In: 2019 IEEE European Symposium on Security and Privacy (EuroS&P), 2019, 496–511. [CrossRef] [Google Scholar]
  279. Simonyan K and Zisserman A. Very Deep Convolutional Networks for Large-scale Image Recognition, 2015. https://arxiv.org/pdf/1409.1556.pdf [Google Scholar]
  280. Boemer F, Cammarota R and Demmler D et al. MP2ML: A mixed-protocol machine learning framework for private inference. In: Proceedings of the 15th International Conference on Availability, Reliability and Security – ARES’20. ACM, 2020. [Google Scholar]
  281. Dowlin N, Gilad-Bachrach R and Laine K et al. CryptoNets: Applying neural networks to encrypted data with high throughput and accuracy. In: Proceedings of the 33rd International Conference on International Conference on Machine Learning - ICML’16, 2016, 201–210. https://JMLR.org. [Google Scholar]
  282. Huang G, Liu Z and Van Der Maaten L et al. Densely connected convolutional networks. In: 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2017, 2261–69. [CrossRef] [Google Scholar]
  283. Dalskov A, Escudero D and Keller M. Secure evaluation of quantized neural networks. Proc Priv Enh Technol 2020; 2020:355–75. [Google Scholar]
  284. Howard AG, Zhu M and Chen B et al. MobileNets: Efficient convolutional neural networks for mobile vision applications, 2017. [Google Scholar]
  285. Spagnolo F, Perri S and Frustaci F et al. Energy-efficient architecture for CNNs inference on heterogeneous FPGA. J Low Power Electron Appl 2020; 10:1. [Google Scholar]
  286. Riazi M S, Weinert C and Tkachenko O et al. Chameleon: a hybrid secure computation framework for machine learning applications. In: Kim J, Ahn G-J, Kim S, Kim Y, López J and Kim T (eds.). ASIACCS 18. ACM Press, 2018, 707–21. [CrossRef] [Google Scholar]
  287. Krizhevsky A, Sutskever I and Hinton G E. Imagenet classification with deep convolutional neural networks. Commun ACM 2017; 60:84–90. [Google Scholar]
  288. Chaudhari H, Choudhury A and Patra A, ASTRA: High throughput 3PC over rings with application to secure prediction. In: Proceedings of the 2019 ACM SIGSAC Conference on Cloud Computing Security Workshop – CCSW’19. ACM, 2019, 81–92. [Google Scholar]
  289. Wagh S, Gupta D and Chandran N. SecureNN: 3-party secure computation for neural network training. Proc Priv Enh Technol 2019; 2019:26–49. [Google Scholar]
  290. Koti N, Pancholi M and Patra A et al. SWIFT: super-fast and robust privacy-preserving machine learning. In: 30th USENIX Security Symposium (USENIX Security 21). USENIX Association, 2021. [Google Scholar]
  291. He K, Zhang X and Ren S et al. Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2016, 770–78. [CrossRef] [Google Scholar]
  292. Wagh S, Tople S and Benhamouda F et al. FALCON: Honest-majority Maliciously Secure Framework for Private Deep Learning, 2021. https://arxiv.org/abs/2004.02229 [Google Scholar]
  293. Byali M, Chaudhari H and Patra A et al. Flash: Fast and robust framework for privacy-preserving machine learning. Cryptology ePrint Archive, Report 2019/1365, 2019.https://eprint.iacr.org/2019/1365. [Google Scholar]
  294. Koti N, Patra A and Rachuri R et al. Tetrad: Actively Secure 4 PC for Secure Training and Inference. Cryptology ePrint Archive, Report 2021/755, 2021.https://eprint.iacr.org/2021/755. [Google Scholar]
  295. Carpov S, Deforth K and Gama N et al. Manticore: Efficient framework for scalable secure multiparty computation protocols. Cryptology ePrint Archive, Report 2021/200, 2021. https://eprint.iacr.org/2021/200. [Google Scholar]
  296. Aly A, Orsini E and Rotaru D et al. Zaphod: Efficiently combining LSSS and garbled circuits in SCALE. In: Proceedings of the 7th ACM Workshop on Encrypted Computing & Applied Homomorphic Cryptography, WAHC’19. ACM, 2019, 33–44. [CrossRef] [Google Scholar]
  297. Rotaru D, Smart NP and Tanguy T et al. Actively Secure Setup for SPDZ. Cryptology ePrint Archive, Report 2019/1300, 2019. https://eprint.iacr.org/2019/1300. [Google Scholar]
  298. Rotaru D and Wood T. MArBled circuits: mixing arithmetic and Boolean circuits with active security. In: Hao F, Ruj S and Sen Gupta S (eds.). INDOCRYPT 2019, volume 11898 of LNCS. Heidelberg: Springer, 2019, 227–49. [CrossRef] [Google Scholar]
  299. Escudero D, Ghosh S and Keller M et al. Improved primitives for MPC over mixed arithmetic-binary circuits. In: Micciancio D and Ristenpart T (eds.). CRYPTO 2020, Part II, volume 12171 of LNCS. Heidelberg: Springer, 2020, 823–852. [CrossRef] [Google Scholar]
  300. Boyle E, Chandran N and Gilboa N et al. Function secret sharing for mixed-mode and fixed-point secure computation. In: Advances in Cryptology – EUROCRYPT 2021, volume 12697 of LNCS. Springer International Publishing, 2021, 871–900. [CrossRef] [Google Scholar]
  301. Boyle E, Gilboa N and Ishai Y. Secure computation with preprocessing via function secret sharing. In: Hofheinz D and Rosen A (eds.). TCC 2019, Part I, volume 11891 of LNCS. Heidelberg: Springer, 2019, 341–371. [Google Scholar]
  302. ISO/IEC JTC 1/SC 27. ISO/IEC WD 4922-2.3 Information security – Secure multiparty computation – Part 2: Mechanisms based on secret sharing, 2021. https://www.iso.org/standard/80514.html. [Google Scholar]
  303. National Institute of Standards and Technology (NIST). Multi- party Threshold Cryptography, 2021. https://csrc.nist.gov/Projects/Threshold-Cryptography. [Google Scholar]
  304. National Institute of Standards and Technology (NIST). Privacy-enhancing Cryptography, 2021. https://csrc.nist.gov/Projects/pec. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.