Security and Safety
Volume 3, 2024
Security and Privacy for Space-Air-Ground Integrated Networks
Article Number 2024006
Number of page(s) 18
Section Information Network
Published online 30 April 2024
  1. Shang B, Yi Y and Liu L. Computing over space-air-ground integrated networks: Challenges and opportunities. IEEE Network 2021; 35: 302–309 [CrossRef] [Google Scholar]
  2. Bao Z, Luo M, Wang H, et al. Blockchain-based secure communication for space information networks. IEEE Network 2021; 35: 50–57. [CrossRef] [Google Scholar]
  3. Ali M, Nelson J, Shea R, et al. Blockstack: A global naming and storage system secured by blockchains. In: Proc. USENIX ATC, 2016, 181–194. [Google Scholar]
  4. Tomescu A and Devadas S. Catena: Efficient non-equivocation via bitcoin. In: Proc. IEEE S & P, 2017, 393–409. [Google Scholar]
  5. Yang N, Guo D, Jiao Y, et al. Lightweight blockchain-based secure spectrum sharing in space-air-ground integrated iot network. IEEE Internet Things J 2023; 10: 20 511–20 527. [Google Scholar]
  6. Liu X, Yang A, Huang C, et al. Decentralized anonymous authentication with fair billing for space-ground integrated networks. IEEE Trans Veh Technol 2021; 70: 7764–7777. [CrossRef] [Google Scholar]
  7. Huang C, Xue L, Liu D, et al. Blockchain-assisted transparent cross-domain authorization and authentication for smart city. IEEE Internet Things J 2022; 9: 17 194–17 209. [Google Scholar]
  8. Wang D, Qi P, Zhao Y, et al. Covert wireless communication with noise uncertainty in space-air-ground integrated vehicular networks. IEEE Trans Intell Transp Syst 2021; 23: 2784–2797. [Google Scholar]
  9. Chen X, Chang Z, Tang J, et al. Uav-aided multi-antenna covert communication against multiple wardens. In: Proc. IEEE ICC, 2021, 1–6. [Google Scholar]
  10. Luo X, Zhang P, Zhang M, et al. A novel covert communication method based on bitcoin transaction. IEEE Trans. Ind. Inform., vol. 18, no. 4, pp. 2830–2839, 2021. [Google Scholar]
  11. Yang B, Taleb T, Fan Y, et al. Mode selection and cooperative jamming for covert communication in d2d underlaid uav networks. IEEE Network 2021; 35: 104–111. [CrossRef] [Google Scholar]
  12. Jadav NK, Rathod T, Gupta R, et al. Blockchain-based secure and intelligent data dissemination framework for uavs in battlefield applications. IEEE Commun Stand Mag 2023; 7: 16–23 [CrossRef] [Google Scholar]
  13. Saraswat D, Bhattacharya P, Singh A, et al. Secure 5g-assisted uav access scheme in iobt for region demarcation and surveillance operations. IEEE Commun Stand Mag 2022; 6: 58–66 [CrossRef] [Google Scholar]
  14. Simmons GJ. The prisoners’ problem and the subliminal channel. In: Proc. CRYPTO, 1984, 51–67. [Google Scholar]
  15. Luo Y, Qin J, Xiang X, et al. Coverless real-time image information hiding based on image block matching and dense convolutional network. J Real-Time Image Process 2020; 17: 125–135. [CrossRef] [Google Scholar]
  16. Peng F, Lin Z, Zhang X, et al. Reversible data hiding in encrypted 2d vector graphics based on reversible mapping model for real numbers. IEEE Trans Inf Forensics Secur 2019; 14: 2400–2411. [CrossRef] [Google Scholar]
  17. Long M, Peng F and Li H-y. Separable reversible data hiding and encryption for hevc video. J Real-Time Image Process 2018; 14: 171–182. [CrossRef] [Google Scholar]
  18. Liao X, Yu Y, Li B, et al. A new payload partition strategy in color image steganography. IEEE Trans Circuits Syst Video Technol 2019; 30: 685–696. [Google Scholar]
  19. Wang Z, Feng Shen L, et al. Cover selection for steganography using image similarity. IEEE Trans Dependable Secur Comput 2022; 20: 920–935. [Google Scholar]
  20. Qiao T, Luo X, Wu T, et al. Adaptive steganalysis based on statistical model of quantized dct coefficients for jpeg images. IEEE Trans Dependable Secur Comput 2019; 18: 2736–2751. [Google Scholar]
  21. Zhang Y, Luo X, Wang J, et al. Image robust adaptive steganography adapted to lossy channels in open social networks. Inf Sci 2021; 564: 306–326. [CrossRef] [Google Scholar]
  22. Mohsin AH, Zaidan A, Zaidan B, et al. Pso–blockchain-based image steganography: towards a new method to secure updating and sharing covid-19 data in decentralised hospitals intelligence architecture. Multimed Tools Appl 2021; 80: 14 137–14 161. [Google Scholar]
  23. Ma K, Zhang W, Zhao X, et al. Reversible data hiding in encrypted images by reserving room before encryption. IEEE Trans Inf Forensics Secur 2013; 8: 553–562. [CrossRef] [Google Scholar]
  24. Sharifzadeh M, Aloraini M and Schonfeld D. Adaptive batch size image merging steganography and quantized gaussian image steganography. IEEE Trans Inf Forensics Secur 2019; 15: 867–879. [Google Scholar]
  25. Simmons GJ. Subliminal communication is easy using the dsa. In: Proc. EUROCRYPT, 1993, 218–232. [Google Scholar]
  26. Anderson R, Vaudenay S, Preneel B, et al. The newton channel. In: Proc. IH, 1996, 151–156. [Google Scholar]
  27. Bohli J-M, González Vasco MI and Steinwandt R. A subliminal-free variant of ecdsa. In: Proc. IH, 2007, 375–387. [Google Scholar]
  28. Jan J-K and Tseng Y-M. New digital signature with subliminal channels based on the discrete logarithm problem. In: Proc. IEEE CMC, 1999, 198–203. [Google Scholar]
  29. Bernstein DJ, Duif N, Lange T, et al. High-speed high-security signatures. J Cryptogr Eng 2012; 2: 77–89. [CrossRef] [Google Scholar]
  30. Hartl A, Annessi R and Zseby T. A subliminal channel in eddsa: Information leakage with high-speed signatures. In: Proc. ACM CCS, 2017, 67–78. [Google Scholar]
  31. Li Y, Ding L, Wu J, et al. Research on a new network covert channel model in blockchain environment. J Commun 2019; 40: 67–79. [Google Scholar]
  32. Partala J. Provably secure covert communication on blockchain. Cryptography 2018; 2: 18. [CrossRef] [Google Scholar]
  33. Zhang P, Cheng Q, Zhang M, et al. A group covert communication method of digital currency based on blockchain technology. IEEE Trans Network Sci Eng 2022; 9: 4266–4276. [CrossRef] [Google Scholar]
  34. Zhang L, Zhang Z, Wang W, et al. Research on a covert communication model realized by using smart contracts in blockchain environment. IEEE Syst J 2021; 16: 2822–2833. [Google Scholar]
  35. Zhang L, Zhang Z, Wang W, et al. A covert communication method using special bitcoin addresses generated by vanitygen. Comput Mat Contin 2020; 65: 597–616. [Google Scholar]
  36. Torki O, Ashouri-Talouki M and Mahdavi M. Blockchain for steganography: Advantages, new algorithms and open challenges. In: Proc Int ISC Conf Inf Secur Cryptol, 2021, 1–5. [Google Scholar]
  37. Xu M, Wu H, Feng G, et al. Broadcasting steganography in the blockchain. In: Proc. IWDW, 2020, 256–267. [Google Scholar]
  38. Alsalami N and Zhang B. Uncontrolled randomness in blockchains: Covert bulletin board for illicit activity. In: Proc. IEEE IWQoS, 2020, 1–10. [Google Scholar]
  39. Cao H, Yin H, Gao F, et al. Chain-based covert data embedding schemes in blockchain. IEEE Internet Things J 2020; 9: 14 699–14 707. [Google Scholar]
  40. Chen Z, Zhu L, Jiang P, et al. Blockchain meets covert communication: A survey. IEEE Commun Surv Tutorials 2022; 24: 2163–2192. [CrossRef] [Google Scholar]
  41. Gao F, Zhu L, Gai K, et al. Achieving a covert channel over an open blockchain network. IEEE Network 2020; 34: 6–13. [CrossRef] [Google Scholar]
  42. Young A and Yung M. The prevalence of kleptographic attacks on discrete-log based cryptosystems. In: Proc. CRYPTO, 1997, 264–276. [Google Scholar]
  43. Tian J, Gou G, Liu C, et al. Dlchain: A covert channel over blockchain based on dynamic labels. In: Proc. ICICS, 2020, 814–830. [Google Scholar]
  44. Zhang P, Cheng Q, Zhang M, et al. A blockchain-based secure covert communication method via shamir threshold and stc mapping. IEEE Trans Dependable Secur Comput 2024. [Google Scholar]
  45. Basuki AI and Rosiyadi D. Joint transaction-image steganography for high capacity covert communication. In: Proc. IC3INA, 2019, 41–46. [Google Scholar]
  46. Liu S, Fang Z, Gao F, et al. Whispers on ethereum: Blockchain-based covert data embedding schemes. In: Proc. ASIACCS, 2020, 171–179. [Google Scholar]
  47. Frkat D, Annessi R and Zseby T. Chainchannels: Private botnet communication over public blockchains. In: Proc. IEEE CPSCom, 2018, 1244–1252. [Google Scholar]
  48. Biryukov A, Feher D and Vitto G. Privacy aspects and subliminal channels in zcash. In: Proc. ACM CCS, 2019, 1813–1830. [Google Scholar]
  49. Nakamoto S. Bitcoin: A peer-to-peer electronic cash system, 2008. [Google Scholar]
  50. Bonneau J, Miller A, Clark J, et al. Sok: Research perspectives and challenges for bitcoin and cryptocurrencies. In: Proc. IEEE S & P, 2015, 104–121. [Google Scholar]
  51. Shen M, Tang X, Zhu L, et al. Privacy-preserving support vector machine training over blockchain-based encrypted iot data in smart cities. IEEE Internet Things J 2019; 6: 7702–7712. [CrossRef] [Google Scholar]
  52. Zhang Y, Xu C, Cheng N, et al. Chronos+: An accurate blockchain-based time-stamping scheme for cloud storage. IEEE Trans Serv Comput 2019; 13: 216–229. [Google Scholar]
  53. Zhang Y, Xu C, Lin X, et al. Blockchain-based public integrity verification for cloud storage against procrastinating auditors. IEEE Trans Cloud Comput 2019; 9: 923–937. [Google Scholar]
  54. Li S, Zhang Y, Xu C, et al. Healthfort: A cloud-based ehealth system with conditional forward transparency and secure provenance via blockchain. IEEE Trans Mob Comput 2022; 22: 6508–6525. [Google Scholar]
  55. Shamir A. How to share a secret. Commun ACM 1979; 22: 612–613. [CrossRef] [Google Scholar]
  56. Wang Y, Chen R, Huang X, et al. Sender-anamorphic encryption reformulated: Achieving robust and generic constructions. In: Proc. ASIACRYPT, 2023, 135–167. [Google Scholar]
  57. Von Ahn L and Hopper NJ. Public-key steganography. In: Proc. EUROCRYPT, 2004, 323–341. [Google Scholar]
  58. Kappos G, Yousaf H, Maller M, et al. An empirical analysis of anonymity in zcash. In: Proc. USENIX Security, 2018, 463–477. [Google Scholar]
  59. Hopper NJ, Langford J and Von Ahn L. Provably secure steganography. In: Proc. CRYPTO, 2002, 77–92. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.