Issue
Security and Safety
Volume 3, 2024
Security and Safety in Artificial Intelligence
Article Number 2024005
Number of page(s) 17
Section Digital Finance
DOI https://doi.org/10.1051/sands/2024005
Published online 21 June 2024
  1. Cao L. AI in finance: Challenges, techniques, and opportunities. ACM Comput Surv (CSUR) 2022; 55: 1–38. [Google Scholar]
  2. Holzinger A, Keiblinger K, Holub P, et al. AI for life: Trends in artificial intelligence for biotechnology. New Biotechnol 2023; 74: 16–24. [CrossRef] [Google Scholar]
  3. Rajpurkar P, Chen E, Banerjee O, et al. AI in health and medicine. Nat Med 2022; 28: 31–38. [CrossRef] [PubMed] [Google Scholar]
  4. Weber P, Carl KV and Hinz O. Applications of explainable artificial intelligence in finance–a systematic review of finance, information systems, and computer science literature. Manag Rev Q 2023; 1–41. [Google Scholar]
  5. McMahan B, Moore E, Ramage D, et al. Communication-efficient learning of deep networks from decentralized data. In: Artificial Intelligence and Statistics, PMLR, 2017, 1273–1282. [Google Scholar]
  6. Goodfellow IJ, Shlens J and Szegedy C. Explaining and harnessing adversarial examples. Statistics 2014; 1050: 20. [Google Scholar]
  7. Zhu L, Liu Z and Han S. Deep leakage from gradients. Adv Neur Inf Process Syst 2019; 32. [Google Scholar]
  8. Li Z, Zhang J, Liu L, et al. Auditing privacy defenses in federated learning via generative gradient leakage. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2022, 10132–10142. [Google Scholar]
  9. Jin W, Yao Y, Han S, et al. FedML-HE: An efficient homomorphic-encryption-based privacy-preserving federated learning system. In: International Workshop on Federated Learning in the Age of Foundation Models in Conjunction with NeurIPS 2023, 2023. [Google Scholar]
  10. Zhang Q, Jing S, Zhao C, et al. Efficient federated learning framework based on multi-key homomorphic encryption. In: Advances on P2P, Parallel, Grid, Cloud and Internet Computing: Proceedings of the 16th International Conference on P2P, Parallel, Grid, Cloud and Internet Computing (3PGCIC-2021), 2022, Springer, 88–105. [CrossRef] [Google Scholar]
  11. Wei K, Li J, Ding M, et al. Federated learning with differential privacy: Algorithms and performance analysis. IEEE Trans Inf Forens Secur 2020; 15: 3454–3469. [CrossRef] [Google Scholar]
  12. Padala M, Damle S, Gujar S. Federated learning meets fairness and differential privacy. In: Neural Information Processing: 28th International Conference, ICONIP 2021, Sanur, Bali, Indonesia, December 8–12, 2021, Proceedings, Part VI 28, Springer, 2021, 692–699. [Google Scholar]
  13. Kingma DP and Welling M. Auto-encoding variational bayes. Statistics 2014; 1050: 1. [Google Scholar]
  14. Li T, Sahu AK, Zaheer M, et al. Federated optimization in heterogeneous networks. Proc Mach Learn Syst 2020; 2: 429–450. [Google Scholar]
  15. Kairouz P, McMahan HB, Avent B, et al. Advances and open problems in federated learning. Found Trends Mach Learn 2021; 14: 1–210. [CrossRef] [Google Scholar]
  16. Smith V, Chiang CK, Sanjabi M, et al. Federated multi-task learning. Adv Neur Inf Process Syst 2017; 30. [Google Scholar]
  17. Bonawitz K, Ivanov V, Kreuter B, et al. Practical secure aggregation for privacy-preserving machine learning. In: Proceedings of the 2017 ACM SIGSAC Conference on Computer and Communications Security, 2017, 1175–1191. [CrossRef] [Google Scholar]
  18. Geyer RC, Klein T and Nabi M. Differentially private federated learning: A client level perspective, arXiv preprint https://arxiv.org/abs/1712.07557, 2017. [Google Scholar]
  19. Abadi M, Chu A, Goodfellow I, et al. Deep learning with differential privacy. In: Proceedings of the 2016 ACM SIGSAC Conference on Computer and Communications Security, 2016, 308–318. [CrossRef] [Google Scholar]
  20. Ma Z, Liu Y, Miao Y, et al. Flgan: Gan-based unbiased federatedlearning under non-IID settings. IEEE Trans Knowl Data Eng 2023. [Google Scholar]
  21. Chunyong YIN and Rui QU. Federated learning algorithm based on personalized differential privacy. J Comput Appl 2023; 43: 1160. [Google Scholar]
  22. Wei W and Liu L. Gradient leakage attack resilient deep learning. IEEE Trans Inf Forens Secur 2021; 17: 303–316. [Google Scholar]
  23. Chakraborty A, Alam M, Dey V, et al. Adversarial attacks and defences: A survey, arXiv preprint https://arxiv.org/abs/1810.00069, 2018. [Google Scholar]
  24. Zhang R, Guo S, Wang J, et al. A survey on gradient inversion: Attacks, defenses and future directions. In: Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, 2023, 5678–685. [Google Scholar]
  25. Liu X, Xie L, Wang Y, et al. Privacy and security issues in deep learning: A survey. IEEE Access 2020; 9: 4566–4593. [Google Scholar]
  26. Zhao B, Mopuri KR and Bilen H. iDLG: Improved deep leakage from gradients, arXiv preprint https://arxiv.org/abs/2001.02610, 2020. [Google Scholar]
  27. Geiping J, Bauermeister H, Dröge H, et al. Inverting gradients-how easy is it to break privacy in federated learning? Adv Neural Inf Process Syst 2020; 33: 16937–16947. [Google Scholar]
  28. Ren H, Deng J and Xie X. GRNN: Generative regression neural network–a data leakage attack for federated learning. ACM Trans Intell Syst Technol (TIST) 2022; 13: 1–24. [Google Scholar]
  29. Yang H, Ge M, Xue D, et al. Gradient leakage attacks in federated learning: Research frontiers, taxonomy and future directions. IEEE Netw 2023; 1–8. [Google Scholar]
  30. Wu Y, Kang Y, Luo J, et al. Fedcg: Leverage conditional gan for protecting privacy and maintaining competitive performance in federated learning. In: International Joint Conference on Artificial Intelligence, 2022, 2334–2340. [Google Scholar]
  31. Goodfellow I, Pouget-Abadie J, Mirza M, et al. Generative adversarial nets. Adv Neur Inf Process Syst 2014; 27. [Google Scholar]
  32. Yang H, Ge M, Xiang K, et al. Fedvae: Communication-efficient federated learning with non-IID private data. IEEE Syst J 2023. [Google Scholar]
  33. Polato M. Federated variational autoencoder for collaborative filtering. In: 2021 International Joint Conference on Neural Networks (IJCNN), IEEE, 2021, 1–8. [Google Scholar]
  34. Jiang Y, Wu Y, Zhang S, et al. Fedvae: Trajectory privacy preserving based on federated variational autoencoder. In: 2023 IEEE 98th Vehicular Technology Conference (VTC2023-Fall), IEEE, 2023, 1–7. [Google Scholar]
  35. Yu Z, Lu Y and Suri N. Rafl: A robust and adaptive federated meta-learning framework against adversaries. In: 2023 IEEE 20th International Conference on Mobile Ad Hoc and Smart Systems (MASS), IEEE, 2023, 496–504. [CrossRef] [Google Scholar]
  36. Wang Z, Fan X, Wang Z, et al. Fedave: Adaptive data value evaluation framework for collaborative fairness in federated learning. Neurocomputing 2024; 574: 127227. [CrossRef] [Google Scholar]
  37. Huong TT, Bac TP, Ha KN, et al. Federated learning-based explainable anomaly detection for industrial control systems. IEEE Access 2022; 10: 53854–53872. [CrossRef] [Google Scholar]
  38. Cui S, Pan W, Liang J, et al. Addressing algorithmic disparity and performance inconsistency in federated learning. Adv Neural Inf Process Syst 2021; 34: 26091–26102. [Google Scholar]
  39. LeCun Y, Bottou L and Bengio Y. Gradient-based learning applied to document recognition. Proc IEEE 1998; 86: 2278–2324. [CrossRef] [Google Scholar]
  40. Xiao H, Rasul K and Vollgraf R. Fashion-mnist: A novel image dataset for benchmarking machine learning algorithms, arXiv preprint https://arxiv.org/abs/1708.07747, 2017. [Google Scholar]
  41. Krizhevsky A and Hinton G. Learning Multiple Layers of Features from Tiny Images, University of Toronto: Toronto, 2009. [Google Scholar]
  42. Peng X, Bai Q, Xia X, et al. Moment matching for multi-source domain adaptation. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, 2019, 1406–1415. [Google Scholar]
  43. Gong B, Shi Y, Sha F, et al. Geodesic flow kernel for unsupervised domain adaptation. In: 2012 IEEE Conference on Computer Vision and Pattern Recognition, IEEE, 2012, 2066–2073. [CrossRef] [Google Scholar]
  44. Lin T, Kong L, Stich SU, et al. Ensemble distillation for robust model fusion in federated learning. Adv Neural Inf Process Syst 2020; 33: 2351–2363. [Google Scholar]
  45. Gu H, Fan L, Li B, et al. Federated deep learning with bayesian privacy, arXiv preprint https://arxiv.org/abs/2109.13012, 2021. [Google Scholar]
  46. Zhu Z, Hong J and Zhou J. Data-free knowledge distillation for heterogeneous federated learning. In: International Conference on Machine Learning, PMLR, 2021, 12878–12889. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.