Open Access
Security and Safety
Volume 3, 2024
Article Number 2024003
Number of page(s) 36
Section Digital Finance
Published online 30 April 2024
  1. He L, Ma C, Tu C, et al. Gait2vec: continuous authentication of smartphone users based on gait behavior. In: 25th IEEE International Conference on Computer Supported Cooperative Work in Design, Hangzhou, 2022, 280–285 [Google Scholar]
  2. Zhang X, Yao L, Huang C, et al. Deepkey: a multimodal biometric authentication system via deep decoding gaits and brainwaves. ACM Trans Intel Syst Technology (TIST) 2020; 11: 1–24 [Google Scholar]
  3. Xu X, Yu J, Chen Y, et al. Touchpass: towards behavior-irrelevant on-touch user authentication on smartphones leveraging vibrations. In: Proceedings of the 26th Annual International Conference on Mobile Computing and Networking, London, 2020, 1–13 [Google Scholar]
  4. Wang C, Xiao Y, Gao X, et al. A framework for behavioral biometric authentication using deep metric learning on mobile devices. IEEE Trans Mob Comput 2021; 22: 19–36 [Google Scholar]
  5. Wang Z, Yang M, Jin C, et al. Ifdds: An anti-fraud outbound robot. In: Proceedings of the AAAI Conference on Artificial Intelligence, 2021, 16117–16119 [Google Scholar]
  6. Kurt MN, Yılmaz Y, Wang X, et al. Online privacy-preserving data-driven network anomaly detection. IEEE J Select Areas Commun 2022; 40: 982–998 [Google Scholar]
  7. Hou M, Wang M, Zhao W, et al. A lightweight framework for abnormal driving behavior detection. Comput Commun 2022; 184: 128–136 [Google Scholar]
  8. Garg S, Kaur K, Kumar N, et al. A hybrid deep learning-based model for anomaly detection in cloud datacenter networks. IEEE Trans Network Service Management 2019; 16: 924–935 [Google Scholar]
  9. Lyastani SG, Schilling M, Fahl S, et al. Better managed than memorized? studying the impact of managers on password strength and reuse. In: 27th USENIX Security Symposium, Baltimore, 2018, 203–220 [Google Scholar]
  10. Wang C, Zhu H, Yang B. Composite behavioral modeling for identity theft detection in online social networks. IEEE Trans Comput Soc Syst 2022; 9: 428–439 [Google Scholar]
  11. Li Z, Yang X, Wang C, et al. Crowd-learning: A behavior-based verification method in software-defined vehicular networks with MEC framework. IEEE Internet Things J 2022; 9: 1622–1639 [Google Scholar]
  12. Yang Y and Sun J. Energy-efficient w-layer for behavior-based implicit authentication on mobile devices. In: IEEE INFOCOM 2017-IEEE Conference on Computer Communications, Atlanta, 2017, 1–9 [Google Scholar]
  13. Shi C, Du M, Lu W, et al. Identity authentication with association behavior sequence in machine-to-machine mobile terminals. Mobile Networks Appl 2022; 1–13 [Google Scholar]
  14. Wu Z, Tian L, Wang Z, et al. Network user behavior authentication based on hidden markov model. In: 2021 IEEE International Conference on Information Communication and Software Engineering (ICICSE), Chengdu, 2021, 76–82 [Google Scholar]
  15. Perera P and Patel VM. Face-based multiple user active authentication on mobile devices. IEEE Trans Inf Forensics Secur 2018; 14: 1240–1250 [Google Scholar]
  16. Shen C, Chen Y and Guan X. Performance evaluation of implicit smartphones authentication via sensor-behavior analysis. Inf Sci 2018. 430: 538–553 [Google Scholar]
  17. Lee H, Hwang JY, Lee S, et al. A parameterized model to select discriminating features on keystroke dynamics authentication on smartphones. Pervasive Mobile Comput 2019; 54: 45–57 [Google Scholar]
  18. Zou Q, Wang Y, Wang Q, et al. Deep learning-based gait recognition using smartphones in the wild. IEEE Trans Inf Forensics Secur 2020; 15: 3197–3212 [Google Scholar]
  19. Yang Y, Guo B, Wang Z, et al. Behavesense: Continuous authentication for security-sensitive mobile apps using behavioral biometrics. Ad Hoc Networks 2019; 84: 9–18 [Google Scholar]
  20. Wang C, Zhu H, Hu R, et al. Longarms: Fraud prediction in online lending services using sparse knowledge graph. IEEE Trans Big Data 2023; 9: 758–772 [Google Scholar]
  21. Wang C, Chai S, Zhu H, et al. Caesar: An online payment anti-fraud integration system with decision explainability. IEEE Trans Dependable Secure Comput 2022; 20: 2565–2577 [Google Scholar]
  22. Wang C, Wang C, Zhu H, et al. LAW: Learning automatic windows for online payment fraud detection. IEEE Trans Dependable Secure Comput 2021; 18: 2122–2135 [Google Scholar]
  23. Wang C and Zhu H. Wrongdoing monitor: A graph-based behavioral anomaly detection in cyber security. IEEE Trans Inf Forensics Security 2022; 17: 2703–2718 [Google Scholar]
  24. Ring M, Wunderlich S, Scheuring D, et al. A survey of network-based intrusion detection data sets. Comput Security 2019; 86: 147–167 [Google Scholar]
  25. Shu K, Mahudeswaran D, Wang S, et al. Fakenewsnet: A data repository with news content, social context, and spatiotemporal information for studying fake news on social media. Big Data 2020; 8: 171–188 [Google Scholar]
  26. Charles G and Mori N. Loan repayment performance of clients of informal lending institutions: Do borrowing histories and dynamic incentives matter? Int J Develop Issues 2017 [Google Scholar]
  27. Bailey C, Brody R and Sokolowski M. Fraudulent loans and the united states paycheck protection program. J Financ Crime, 2022; 29: 519–532 [Google Scholar]
  28. Wang C and Zhu H. Representing fine-grained co-occurrences for behavior-based fraud detection in online payment services. IEEE Trans Dependable Sec Comput 2022; 19: 301–315 [Google Scholar]
  29. 52th Statistical Report on the Development of the Internet in China., 2023. [Google Scholar]
  30. Chen X, Wang C, Yang Q, et al. Locally differentially private high-dimensional data synthesis. Sci China Inf Sci 2023; 66 [Google Scholar]
  31. Chen X, Wang C, Cui J, et al. Incorporating prior knowledge in local differentially private data collection for frequency estimation. IEEE Trans Big Data, 2023; 9: 499–511 [Google Scholar]
  32. Youyou W, Kosinski M and Stillwell D. Computer-based personality judgments are more accurate than those made by humans. Proc Nat Academy Sci 2015; 112: 1036–1040 [Google Scholar]
  33. Kosinski M, Stillwell D and Graepel T. Private traits and attributes are predictable from digital records of human behavior. Proc Nat Acad Sci 2013; 110: 5802–5805 [Google Scholar]
  34. Song C, Qu Z, Blumm N, et al. Limits of predictability in human mobility. Science 2010 [Google Scholar]
  35. Yin H, Hu Z, Zhou X, et al. Discovering interpretable geo-social communities for user behavior prediction. In: 2016 IEEE 32nd International Conference on Data Engineering (ICDE), Helsinki, 2016, 942–953 [Google Scholar]
  36. Hashemi SH and Kamps J. Where to go next? exploiting behavioral user models in smart environments. In: Proceedings of the 25th Conference on User Modeling, Adaptation and Personalization, Bratislava, 2017, 50–58 [Google Scholar]
  37. Zhou C, Bai J, Song J, et al. Atrank: An attention-based user behavior modeling framework for recommendation. In: Proceedings of the AAAI conference on artificial intelligence, New Orleans, 2018, 4564–4571 [Google Scholar]
  38. Wang Q, Yin H, Wang H, et al. Tsaub: a temporal-sentiment-aware user behavior model for personalized recommendation. In: Databases Theory and Applications: 29th Australasian Database Conference (ADC), Gold Coast, 2018, 211–223 [Google Scholar]
  39. Nai W, Liu L, Wang S, et al. Modeling the trend of credit card usage behavior for different age groups based on singular spectrum analysis. Algorithms 2018; 11: 15 [Google Scholar]
  40. Yang J, Qiao Y, Zhang X, et al. Characterizing user behavior in mobile internet. IEEE Trans Emerg Top Comput 2014; 3: 95–106 [Google Scholar]
  41. Huo C, Zhao Y and Ren W. User behavior sequence modeling to optimize ranking mechanism for e-commerce search. In: Proceedings of the 3rd International Conference on Communication and Information Processing, Tokyo, 2017, 164–169 [Google Scholar]
  42. Zhu Y, Li H, Liao Y, et al. What to do next: Modeling user behaviors by Time-LSTM. In: Proceedings of the 26th International Joint Conference on Artificial Intelligence (IJCAI), Melbourne, 2017, 3602–3608 [Google Scholar]
  43. Cao Q, Yang X, Yu J, et al. Uncovering large groups of active malicious accounts in online social networks. In: Proceedings of the 2014 ACM SIGSAC Conference on Computer and Communications Security, Scottsdale, 2014, 477–488 [Google Scholar]
  44. Zhang Y, Lv S and Fan D. Research on abnormal account detection methods in online social networks. J Comput Res Develop 2015; 38: 2011–2027 [Google Scholar]
  45. Wang Z, Jiang C, Ding Y, et al. A novel behavioral scoring model for estimating probability of default over time in peer-to-peer lending. Electr Comm Res Appl 2018; 27: 74–82 [Google Scholar]
  46. Liu S, Wang S, Zhu F. Structured learning from heterogeneous behavior for social identity linkage. IEEE Trans Knowledge Data Eng 2015; 27: 2005–2019 [Google Scholar]
  47. Wang Q, Shen D, Feng S, et al. Comprehensive perspective feature combined with crowdsourcing cross-social network user identification. J Softw 2018; 29 [Google Scholar]
  48. Zafarani R and Liu H. Connecting users across social media sites: a behavioral-modeling approach. In: Proceedings of the 19th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, Chicago, 2013, 41–49 [Google Scholar]
  49. Pearman S, Thomas J, Naeini PE, et al. Let's go in for a closer look: Observing passwords in their natural habitat. In: Proceedings of the 2017 ACM SIGSAC Conference on Computer and Communications Security, Dallas, 2017, 295–310 [Google Scholar]
  50. Ye G, Tang Z, Fang D, et al. Cracking android pattern lock in five attempts. In: Proceedings of the 24th Network and Distributed System Security Symposium (NDSS), California, 2017 [Google Scholar]
  51. Constantinides A, Belk M, Fidas C, et al. An eye gaze-driven metric for estimating the strength of graphical passwords based on image hotspots. In: Proceedings of the 25th International Conference on Intelligent User Interfaces, Cagliari, 2020, 33–37 [Google Scholar]
  52. Constantinides A, Belk M, Fidas C, et al. On the accuracy of eye gaze-driven classifiers for predicting image content familiarity in graphical passwords. In: Proceedings of the 27th ACM Conference on User Modeling, Adaptation and Personalization, Larnaca, 2019, 201–205 [Google Scholar]
  53. Pal U, Roy RK, Roy K, et al. Indian multi-script full pin-code string recognition for postal automation. In: 2009 10th International Conference on Document Analysis and Recognition, Barcelona, 2009, 456–460 [Google Scholar]
  54. Bonneau J, Herley C, VanOorschot PC, et al. Passwords and the evolution of imperfect authentication. Commun ACM 2015; 58: 78–87 [Google Scholar]
  55. Turner S and Housley R. Implementing Email and Security Tokens: current Standards, Tools, and Practices. John Wiley & Sons, 2008 [Google Scholar]
  56. Hallsteinsen S, Jorstad I, et al. Using the mobile phone as a security token for unified authentication. In: Proceedings of the Second International Conference on Systems and Networks Communications (ICSNC), Cap Esterel, 2007, 68–68 [Google Scholar]
  57. Bonneau J, Herley C, VanOorschot PC, et al. The quest to replace passwords: A framework for comparative evaluation of web authentication schemes. In: IEEE Symposium on Security and Privacy, San Francisco, 2012, 553–567 [Google Scholar]
  58. Ruiz-Blondet MV, Jin Z, Laszlo S. Cerebre: A novel method for very high accuracy event-related potential biometric identification. IEEE Trans Inf Forensics Security 2016; 11: 1618–1629 [Google Scholar]
  59. Sitová Z, Šeděnka J, Yang Q, et al. Hmog: New behavioral biometric features for continuous authentication of smartphone users. IEEE Trans Inf Forensics Security 2015; 11: 877–892 [Google Scholar]
  60. Bicego M, Lagorio A, Grosso E, et al. On the use of sift features for face authentication. In: IEEE Conference on Computer Vision and Pattern Recognition Workshop (CVPRW), New York, 2006, 35–35 [Google Scholar]
  61. Clancy TC, Kiyavash N and Lin DJ. Secure smartcardbased fingerprint authentication. In: Proceedings of ACM SIGMM Workshop on Biometrics Methods and Applications, Berkley, 2003, 45–52 [Google Scholar]
  62. Kumar A and Passi A. Comparison and combination of iris matchers for reliable personal authentication. Pattern Recognition, 2010; 43: 1016–1026 [Google Scholar]
  63. Das A, Bonneau J, Caesar M, et al. The tangled web of password reuse. In: 21st Annual Network and Distributed System Security Symposium (NDSS), San Diego, 2014, 23–26 [Google Scholar]
  64. Sun HM, Chen YH and Lin YH. opass: A user authentication protocol resistant to password stealing and password reuse attacks. IEEE Trans Inf Forensics Security 2011; 7: 651–663 [Google Scholar]
  65. Xu J, You J and Liu F. A fuzzy rules based approach for performance anomaly detection. In: Proceedings of IEEE Networking, Sensing and Control, 2005, 44–48 [Google Scholar]
  66. Cao L. Domain-driven data mining: Challenges and prospects. IEEE Trans Knowledge Data Eng 2010; 22: 755–769 [Google Scholar]
  67. Tandon G and Chan PK. Learning rules from system call arguments and sequences for anomaly detection. In: Proceedings of ICDM Workshop on Data Mining for Computer Security, 2003 [Google Scholar]
  68. Pan D, Liu D, Zhou J, et al. Anomaly detection for satellite power subsystem with associated rules based on kernel principal component analysis. Microelectron Reliability 2015 55: 2082–2086 [Google Scholar]
  69. Li X, Han J, Kim S, et al. Roam: Rule-and motif-based anomaly detection in massive moving object data sets. In: Proceedings of the 17th SIAM International Conference on Data Mining, Minneapolis, 2007, 273–284 [Google Scholar]
  70. Lin XX, Lin P and Yeh EH. Anomaly detection/prediction for the internet of things: State of the art and the future. IEEE Network 2020; 35: 212–218 [Google Scholar]
  71. Tandon G and Chan PK. Weighting versus pruning in rule validation for detecting network and host anomalies. In: Proceedings of the 13th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, San Jose, 2007, 697–706 [Google Scholar]
  72. WALDROP MM. Cybercrime. Nature, 2016, 533. [Google Scholar]
  73. Krol K, Spring JM, Parkin S, et al. Towards robust experimental design for user studies in security and privacy. In: The LASER Workshop: Learning from Authoritative Security Experiment Results (LASER), San Jose, 2016, 21–31 [Google Scholar]
  74. Pearce P, Dave V, Grier C, et al. Characterizing large-scale click fraud in zeroaccess. In: Proceedings of the 2014 ACM SIGSAC Conference on Computer and Communications Security, Scottsdale, 2014, 141–152 [Google Scholar]
  75. Waldrop MM. How to hack the hackers: The human side of cybercrime. Nature 2016; 533 [Google Scholar]
  76. Abuhamad M, Abusnaina A, Nyang D, et al. Sensor-based continuous authentication of smartphones users using behavioral biometrics: A contemporary survey. IEEE Internet Things J 2020; 8: 65–84 [Google Scholar]
  77. Zhu M, Zhou J and Wang J. A novel method of user identity authentication based on keystroke features. Comput Eng 2002; 28: 138–139 [Google Scholar]
  78. Primo A. Keystroke-based continuous authentication while listening to music on your smart-phone. In: 8th IEEE Annual Ubiquitous Computing, Electronics and Mobile Communication Conference (UEMCON), New York, 2017, 217–225 [Google Scholar]
  79. Ho J and Kang DK. One-class naïve bayes with duration feature ranking for accurate user authentication using keystroke dynamics. Appl Intell 2018; 48: 1547–1564 [Google Scholar]
  80. Mao C, Cheng Y and Yu W. Research on the method of dynamic real-time identity authentication. Chin J Network Inf Security 2016; 2: 76–85 [Google Scholar]
  81. Shen C, Cai Z, Guan X, et al. User authentication through mouse dynamics. IEEE Trans Inf Forensics Security 2012; 8: 16–30 [Google Scholar]
  82. Kang P and Cho S. Keystroke dynamics-based user authentication using long and free text strings from various input devices. Inf Sci 2015; 308: 72–93 [Google Scholar]
  83. Inguanez F and Ahmadi S. Securing smartphones via typing heat maps. In: IEEE 6th International Conference on Consumer Electronics-Berlin (ICCE-Berlin), Berlin, 2016, 193–197 [Google Scholar]
  84. Cao H, Jiang H, Liu D, et al. Evidence in hand: Passive vibration response-based continuous user authentication. In: 41st IEEE International Conference on Distributed Computing Systems (ICDCS), Washington DC, 2021, 1020–1030 [Google Scholar]
  85. Shen C, Li Y, Chen Y, et al. Performance analysis of multi-motion sensor behavior for active smartphone authentication. IEEE Trans Inf Forensics Security 2017; 13: 48–62 [Google Scholar]
  86. Mao R, Ji H, Cheng D, et al. Implicit continuous authentication model based on mobile terminal touch behavior. In: IEEE Symposium on Computers and Communications (ISCC), Rhodes, 2022, 1–7 [Google Scholar]
  87. Yang X, Yang S, Liu J, et al. Enabling finger-touch-based mobile user authentication via physical vibrations on iot devices. IEEE Trans Mobile Computing, 2021, 21: 3565–3580 [Google Scholar]
  88. Chen Y, Shen C, Wang Z, et al. Modeling interactive sensor-behavior with smartphones for implicit and active user authentication. In: IEEE International Conference on Identity, Security and Behavior Analysis (ISBA), New Delhi, 2017, 1–6 [Google Scholar]
  89. Lee WH and Lee R. Implicit sensor-based authentication of smartphone users with smartwatch. In: Proceedings of the Hardware and Architectural Support for Security and Privacy 2016, 2016, 1–8 [Google Scholar]
  90. Song C, Wang A, Ren K, et al. Eyeveri: A secure and usable approach for smartphone user authentication. In: 35th Annual IEEE International Conference on Computer Communications (INFOCOM), San Francisco, 2016, 1–9 [Google Scholar]
  91. Kong J, Guo Y, Liu C, et al. Gait feature recognition method based on smartphone motion sensor. J Comput Appl 2019; 39: 1747 [Google Scholar]
  92. Chauhan J, Kwon YD, Hui P, et al. Contauth: Continual learning framework for behavioral-based user authentication. Proc ACM on Int Mobile Wearable Ubiquitous Technol 2020; 4: 1–23 [Google Scholar]
  93. Lu L, Yu J, Chen Y, et al. Lippass: Lip reading-based user authentication on smartphones leveraging acoustic signals. In: IEEE INFOCOM 2018-IEEE Conference on Computer Communications, Honolulu, 2018, 1466–1474 [Google Scholar]
  94. Ji X, Zhou X, Yan C, et al. A nonlinearity-based secure face-to-face device authentication for mobile devices. IEEE Trans Mobile Comput 2020; 21: 1155–1171 [Google Scholar]
  95. Ruan X, Wu Z, Wang H, et al. Profiling online social behaviors for compromised account detection. IEEE Trans Inf Forensics Security 2015; 11: 176–187 [Google Scholar]
  96. Shi E, Niu Y, Jakobsson M, et al. Implicit authentication through learning user behavior. In: Information Security 13th International Conference, Boca Raton, 2010, 99–113 [Google Scholar]
  97. Skračić K, Pale P and Kostanjèar Z. Authentication approach using one-time challenge generation based on user behavior patterns captured in transactional data sets. Comput Security 2017; 67: 107–121 [Google Scholar]
  98. Dasgupta D, Roy A and Nag A. Toward the design of adaptive selection strategies for multi-factor authentication. Comput Security 2016; 63: 85–116 [Google Scholar]
  99. Wazzeh M, Ould-Slimane H, Talhi C, et al. Privacy-preserving continuous authentication for mobile and iot systems using warmup-based federated learning. IEEE Network, 2022 [Google Scholar]
  100. Liu X, Shen C and Chen Y. Multi-source interactive behavior analysis for continuous user authentication on smartphones. In: Biometric Recognition: 13th Chinese Conference, CCBR 2018, Urumqi, 2018, 669–677 [Google Scholar]
  101. Jiang J, Ni B and Wang C. Financial fraud detection on micro-credit loan scenario via fuller location information embedding. In: Companion Proceedings of the Web Conference 2021, 2021, 238–246 [Google Scholar]
  102. Wu Y, Xie Z, Ji S, et al. Fraud-agents detection in online microfinance: a large-scale empirical study. IEEE Trans Dependable Secure Comput 2022; 20: 1169–1185 [Google Scholar]
  103. Awotunde JB, Misra S, Ayeni F, et al. Artificial intelligence based system for bank loan fraud prediction. In: Hybrid Intelligent Systems: 21st International Conference on Hybrid Intelligent Systems (HIS 2021), 2021, 463–472 [Google Scholar]
  104. Chang JW, Yen N and Hung JC. Design of a nlp-empowered finance fraud awareness model: the anti-fraud chatbot for fraud detection and fraud classification as an instance. J Ambient Intell Humanized Comput 2022; 13: 4663–4679 [Google Scholar]
  105. Xu B, Shen H, Sun B, et al. Towards consumer loan fraud detection: Graph neural networks with role-constrained conditional random field. In: Proceedings of the AAAI Conference on Artificial Intelligence, 2021, 4537–4545 [Google Scholar]
  106. He X, Gong Q, Chen Y, et al. Datingsec: Detecting malicious accounts in dating apps using a content-based attention network. IEEE Trans Dependable Secure Comput 2021; 18: 2193–2208 [Google Scholar]
  107. Wang S, Liu Y, Zheng C, et al. Purchase pattern based anti-fraud framework in online e-commerce platform using graph neural network. In: Artificial Intelligence: Second CAAI International Conference, CICAI 2022, Beijing, China, August 27-28, 2022; 112–123 [Google Scholar]
  108. Chen A, Fu Y, Zheng X, et al. An efficient network behavior anomaly detection using a hybrid DBN-LSTM network. Comput Security 2022; 114: 102600 [Google Scholar]
  109. Chen Q, Islam SR, Haswell H, et al. Automated ransomware behavior analysis: Pattern extraction and early detection. In: Science of Cyber Security: Second International Conference, SciSec 2019, Nanjing, 2019, 199–214 [Google Scholar]
  110. AHamid IR and Abawajy J. Hybrid feature selection for phishing email detection. In: Algorithms and Architectures for Parallel Processing: 11th International Conference, ICA300 2011, Melbourne, Australia, October 24-26, 2011, 266–275 [Google Scholar]
  111. Qin ZQ, Xu HZ, Ma XK, et al. Interaction context-aware network behavior anomaly detection for discovering unknown attacks. Security Commun Networks, 2022 [Google Scholar]
  112. Jiang C, Fang Y, Zhao P, et al. Intelligent uav identity authentication and safety supervision based on behavior modeling and prediction. IEEE Trans Indus Inf 2020; 16: 6652–6662 [Google Scholar]
  113. Pajouh HH, Javidan R, Khayami R, et al. A two-layer dimension reduction and two-tier classification model for anomaly-based intrusion detection in iot backbone networks. IEEE Trans Emerging Top Comput 2016; 7: 314–323 [Google Scholar]
  114. Wang J, Hao S, Wen R, et al. Iot-praetor: Undesired behaviors detection for iot devices. IEEE Internet Things J 2020; 8: 927–940 [Google Scholar]
  115. Pei J, Zhong K, Jan MA, et al. Personalized federated learning framework for network traffic anomaly detection. Comput Networks 2022; 209: 108906 [Google Scholar]
  116. Mothukuri V, Khare P, Parizi RM, et al. Federated-learning-based anomaly detection for iot security attacks. IEEE Internet Things J 2021; 9: 2545–2554 [Google Scholar]
  117. Ji T, Sivakumar AN, Chowdhary G, et al. Proactive anomaly detection for robot navigation with multi-sensor fusion. IEEE Robot Autom Lett 2022; 7: 4975–4982 [Google Scholar]
  118. Cui L, Qu Y, Xie G, et al. Security and privacy-enhanced federated learning for anomaly detection in iot infrastructures. IEEE Trans Ind Inf 2021; 18: 3492–3500 [Google Scholar]
  119. Luo T, Nagarajan SG. Distributed anomaly detection using autoencoder neural networks in wsn for iot. In: 2018 IEEE International Conference on Communications (ICC), Kansas City, 2018, 1–6 [Google Scholar]
  120. Li Z, Zhao Y, Geng Y, et al. Situation-aware multivariate time series anomaly detection through active learning and contrast vae-based models in large distributed systems. IEEE J Selected Areas Commun 2022; 40: 2746–2765 [Google Scholar]
  121. Modell A, Larson J, Turcotte M, et al. A graph embedding approach to user behavior anomaly detection. In: 2021 IEEE International Conference on Big Data (Big Data), Orlando, 2021, 2650–2655 [Google Scholar]
  122. Mazzawi H, Dalal G, Rozenblatz D, et al. Anomaly detection in large databases using behavioral patterning. In: IEEE 33rd International Conference on Data Engineering (ICDE), San Diego, 2017, 1140–1149 [Google Scholar]
  123. Li T, Sanjabi M, Beirami A, et al. ArXiv preprint [arXiv:1905.10497], 2019 [Google Scholar]
  124. Mohri M, Sivek G, Suresh AT. Agnostic federated learning. In: Proceedings of the 36th International Conference on Machine Learning, Long Beach, 2019, 4615–4625 [Google Scholar]
  125. Wei G, Vasilakos AV, Zheng Y, et al. A game-theoretic method of fair resource allocation for cloud computing services. J Supercomput 2010; 54: 252–269 [Google Scholar]
  126. Lin F, Zhou Y, An X, et al. Fair resource allocation in an intrusion-detection system for edge computing: Ensuring the security of internet of things devices. IEEE Consumer Electronics Mag 2018; 7: 45–50 [Google Scholar]
  127. Lippi M, Palka P, Contissa G, et al. Claudette: an automated detector of potentially unfair clauses in online terms of service. Artif Intell Law 2019; 27: 117–139 [Google Scholar]
  128. DollyNithisha M, DivyaSri B, LekhyaSahithi P, et al. Unfair review detection on amazon reviews using sentiment analysis. In: High Performance Computing and Networking: Select Proceedings of CHSN 2021, Springer, 2022, 295–306 [Google Scholar]
  129. Li L, Bartel A, Bissyandé TF, et al. Iccta: Detecting inter-component privacy leaks in android apps. In: 2015 IEEE/ACM 37th IEEE International Conference on Software Engineering, Florence, 2015, 280–291 [Google Scholar]
  130. Liu D, Gao X and Wang H. Location privacy breach: Apps are watching you in background. In: 2017 IEEE 37th international conference on distributed computing systems (ICDCS), Atlanta, 2017, 2423–2429 [Google Scholar]
  131. Mehdy A and Mehrpouyan H. A multi-input multi-output transformer-based hybrid neural network for multi-class privacy disclosure detection. ArXiv preprint [arXiv:2108.08483], 2021 [Google Scholar]
  132. Shokri R, Stronati M, Song C, et al. Membership inference attacks against machine learning models. In: 2017 IEEE symposium on security and privacy (SP), San Jose, 2017, 3–18 [Google Scholar]
  133. Karimi Y, Squicciarini A, Wilson S. Automated detection of doxing on twitter. Proc ACM Human-Computer Interaction 2022; 6: 1–24 [Google Scholar]
  134. Chen X, Wang C, Yang Q, et al. The opportunity in difficulty: A dynamic privacy budget allocation mechanism for privacy-preserving multi-dimensional data collection. ACM Trans Manag Inf Syst 2023; 14: 1–24 [Google Scholar]
  135. Rahat TA, Le T, Tian Y. Automated detection of gdpr disclosure requirements in privacy policies using deep active learning. ArXiv preprint [arXiv:2111.04224], 2021 [Google Scholar]
  136. Li Y, Dai W, Ming Z, et al. Privacy protection for preventing data over-collection in smart city. IEEE Trans Comput 2015; 65: 1339–1350 [Google Scholar]
  137. Stallings W. Handling of personal information and deidentified, aggregated, and pseudonymized information under the california consumer privacy act. IEEE Security Privacy 2020; 18: 61–64 [Google Scholar]
  138. Godinhode Matos M, Adjerid I. Consumer consent and firm targeting after gdpr: The case of a large telecom provider. Management Science, 2021 [Google Scholar]
  139. Hu H, Zhang H, Yang Y. Security risk situation quantification method based on threat prediction for multimedia communication network. Multimedia Tools Appl 2018; 77: 21693–21723 [Google Scholar]
  140. Wang Q, Zhao X, Guo J, et al. Research on network behavior risk measurement method based on traffic analysis. Security Commun Networks 2023. [Google Scholar]
  141. Li Q, He H, Fang B, et al. Abnormal behavior discovery of network groups based on trust. J Comput Sci Technol 2014; 37: 1–14 [Google Scholar]
  142. Yang H, Zhang Z, Xie L, et al. Network security situation assessment with network attack behavior classification. Int J Intell Syst 2022; 37: 6909–6927 [Google Scholar]
  143. Ghazel M. Using stochastic petri nets for level-crossing collision risk assessment. IEEE Trans Intell Trans Syst 2009; 10: 668–677 [Google Scholar]
  144. Liu S, Lin G, Qu L, et al. Cd-vuld: Cross-domain vulnerability discovery based on deep domain adaptation. IEEE Trans Dependable Secure Comput 2020; 19: 438–451 [Google Scholar]
  145. Wan Z, Shen J, Chuang J, et al. Too afraid to drive: systematic discovery of semantic dos vulnerability in autonomous driving planning under physical-world attacks. In: 29th Annual Network and Distributed System Security Symposium (NDSS), San Diego, 2022 [Google Scholar]
  146. Luo Z, Wang P, Wang B, et al. Vulhawk: Cross-architecture vulnerability detection with entropy-based binary code search. In: 30th Annual Network and Distributed System Security Symposium (NDSS), San Diego, 2023 [Google Scholar]
  147. Cui S, Zhao G, Gao Y, et al. Vrust: Automated vulnerability detection for solana smart contracts. In: Proceedings of the 2022 ACM SIGSAC Conference on Computer and Communications Security (CCS), Los Angeless, 2022, 639–652 [Google Scholar]
  148. Ding L, Wang Z, Wang X, et al. Security information transmission algorithms for iot based on cloud computing. Comput Commun 2020; 155: 32–39 [Google Scholar]
  149. Guo S, Wang F, Zhang N, et al. Master-slave chain based trusted cross-domain authentication mechanism in IoT. J Network Comput Appl 2020; 172: 102812 [Google Scholar]
  150. Xuan S, Xiao H, Man D, et al. A cross-domain authentication optimization scheme between heterogeneous iot applications. Wireless Commun Mobile Comput 2021; 2021: 1–14 [Google Scholar]
  151. Hao X, Ren W, Fei Y, et al. A blockchain-based cross-domain and autonomous access control scheme for internet of things. IEEE Trans Serv Comput 2022; 16: 773–786 [Google Scholar]
  152. Li C, Yang H, Sun Z, et al. Federated hierarchical trust-based interaction scheme for cross-domain industrial IoT. IEEE Internet Things J 2022; 10: 447–457 [Google Scholar]
  153. Sheff I, Magrino T, Liu J, et al. Safe serializable secure scheduling: Transactions and the trade-off between security and consistency. In: Proceedings of the 2016 ACM SIGSAC Conference on Computer and Communications Security, Vienna, 2016, 229–241 [Google Scholar]
  154. Chen J, Zhan Z, He K, et al. Xauth: Efficient privacy-preserving cross-domain authentication. IEEE Trans Dependable Secure Comput 2021; 19: 3301–3311 [Google Scholar]
  155. Lin C, He J, Shen C, et al. Crossbehaauth: Cross-scenario behavioral biometrics authentication using keystroke dynamics. IEEE Trans Dependable Secure Comput 2022; 20: 2314–2327 [Google Scholar]
  156. Zhang Y, Li J, Zheng D, et al. Towards privacy protection and malicious behavior traceability in smart health. Personal Ubiquitous Comput 2017; 21: 815–830 [Google Scholar]
  157. Lin L, Li S, Lv X, et al. Btdetect: An insider threats detection approach based on behavior traceability for iaas environments. In: 2021 IEEE Intl Conf on Parallel & Distributed Processing with Applications, Big Data & Cloud Computing, Sustainable Computing & Communications, Social Computing & Networking (ISPA/BDCloud/SocialCom/SustainCom), New York, 344–351 [Google Scholar]
  158. Yu K, Tan L, Aloqaily M, et al. Blockchain-enhanced data sharing with traceable and direct revocation in IIoT. IEEE Trans Ind Inf 2021; 17: 7669–7678 [Google Scholar]
  159. Wang J, Li S, Wanting J, et al. A composite blockchain associated event traceability method for financial activities. Peer-to-Peer Networking Appl 2023; 1–20 [Google Scholar]
  160. Zhu H, Niu W, Liao X, et al. Attacker traceability on ethereum through graph analysis. Security Commun Networks 2022; 2022: 3448950:1-3448950:12 [Google Scholar]
  161. Li X, Wei L, Wang L, et al. A blockchain-based privacy-preserving authentication system for ensuring multimedia content integrity. Int J Intell Syst 2022; 37: 3050–3071 [Google Scholar]
  162. Javaid U, Aman MN, Sikdar B. Blockpro: Blockchain based data provenance and integrity for secure IoT environments. In: Proceedings of the 1st Workshop on Blockchain-enabled Networked Sensor Systems, Shenzhen, 2018, 13–18 [Google Scholar]
  163. Patil AS, Hamza R, Hassan A, et al. Efficient privacy-preserving authentication protocol using pufs with blockchain smart contracts. Comput Security 2020; 97: 101958 [Google Scholar]
  164. Barbareschi M, DeBenedictis A, LaMontagna E, et al. A puf-based mutual authentication scheme for cloud-edges IoT systems. Future Gen Comput Syst 2019; 101: 246–261 [Google Scholar]
  165. Wei P, Wang D, Zhao Y, et al. Blockchain data-based cloud data integrity protection mechanism. Future Gen Comput Syst 2020; 102: 902–911 [Google Scholar]
  166. Jing C, Wang C and Yan C. Thinking like a fraudster: Detecting fraudulent transactions via statistical sequential features. In: Financial Cryptography and Data Security: 23rd International Conference, FC 2019, Frigate Bay, St. Kitts and Nevis, 588–604 [Google Scholar]
  167. Bauder RA and Khoshgoftaar TM. The effects of varying class distribution on learner behavior for medicare fraud detection with imbalanced big data. Health Inf Sci Syst 2018; 6: 1–14 [Google Scholar]
  168. Kaur P and Gosain A. Comparing the behavior of oversampling and undersampling approach of class imbalance learning by combining class imbalance problem with noise. In: ICT Based Innovations: Proceedings of CSI 2015, 23–30 [Google Scholar]
  169. Eisenberg L and Noe TH. Systemic risk in financial systems. Manage Sci 2001; 47: 236–249 [Google Scholar]
  170. Chen J and Sun J. Understanding the chinese data security law. Int Cybersecurity Law Rev 2021; 2: 209–221 [Google Scholar]
  171. Phan-Minh T, Grigore EC, Boulton FA, et al. Covernet: Multimodal behavior prediction using trajectory sets. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Seattle, 2020, 14074–14083 [Google Scholar]
  172. Derman E and Salah AA. Continuous real-time vehicle driver authentication using convolutional neural network based face recognition. In: 13th IEEE International Conference on Automatic Face & Gesture Recognition (FG 2018), Xi'an, 577–584 [Google Scholar]
  173. Gupta R, Tanwar S, Tyagi S, et al. Tactile-internet-based telesurgery system for healthcare 4.0: An architecture, research challenges, and future directions. IEEE Network, 2019; 33: 22–29 [Google Scholar]
  174. Smith ER and Conrey FR. Agent-based modeling: A new approach for theory building in social psychology. Personality Soc Psychol Rev 2007; 11: 87–104 [Google Scholar]
  175. Tan AZ, Yu H, Cui L, et al. Towards personalized federated learning. IEEE Trans Neural Networks Learn Syst 2022 [Google Scholar]
  176. Collins L, Hassani H, Mokhtari A, et al. Exploiting shared representations for personalized federated learning. In: International Conference on Machine Learning, PMLR, 2089–2099 [Google Scholar]
  177. Wei K, Li J, Ding M, et al. Federated learning with differential privacy: Algorithms and performance analysis. IEEE Trans Inf Forensics Security 2020; 15: 3454–3469 [Google Scholar]
  178. Chen P, Yang J, Lin J, et al. A practical clean-label backdoor attack with limited information in vertical federated learning. In: 2023 IEEE International Conference on Data Mining (ICDM), IEEE, 41–50 [Google Scholar]
  179. Huang A, Liu Y, Chen T, et al. Starfl: Hybrid federated learning architecture for smart urban computing. ACM Trans Intell Syst Technol (TIST) 2021; 12: 1–23 [Google Scholar]
  180. Shayan M, Fung C, Yoon CJ, et al. Biscotti: A blockchain system for private and secure federated learning. IEEE Trans Parallel Distributed Syst 2020; 32: 1513–1525 [Google Scholar]
  181. Lu Y, Huang X, Dai Y, et al. Blockchain and federated learning for privacy-preserved data sharing in industrial iot. IEEE Trans Ind Inf 2019; 16: 4177–4186 [Google Scholar]
  182. Yang Q, Wang C, Wang C, et al. Fundamental limits of data utility: A case study for data-driven identity authentication. IEEE Trans Comput Soc Syst 2020; 8: 398–409 [Google Scholar]
  183. Dong C, Liang H, Xu X, et al. Semantic communication system based on semantic slice models propagation. IEEE J Selected Areas Commun 2022; 41: 202–213 [Google Scholar]
  184. Dai J, Wang S, Tan K, et al. Nonlinear transform source-channel coding for semantic communications. IEEE J Selected Areas Commun 2022; 40: 2300–2316 [Google Scholar]
  185. Roa L, Correa-Bahnsen A, Suarez G, et al. Super-app behavioral patterns in credit risk models: Financial, statistical and regulatory implications. Expert Syst Appl 2021; 169: 114486 [Google Scholar]
  186. Kunchay S and Abdullah S. Watchover: using apple watches to assess and predict substance co-use in young adults. In: Adjunct Proceedings of the 2020 ACM International Joint Conference on Pervasive and Ubiquitous Computing and Proceedings of the 2020 ACM International Symposium on Wearable Computers 488–493 [Google Scholar]
  187. Xiao X, Li L, Zeng L, et al. Fatigue risk management based pilot sleep monitoring validation experiment. In: Seventh International Conference on Traffic Engineering and Transportation System (ICTETS 2023). SPIE, 13064, 370–376 [Google Scholar]
  188. Ramachandran A, Karuppiah A, et al. A survey on recent advances in wearable fall detection systems. BioMed Res Int 2020; 2020 [Google Scholar]
  189. Pei K, Wang S, He Y, et al. Elderly care stm32-based intelligent anti-fall vest for the elderly. In: 2021 IEEE 5th Information Technology, Networking, Electronic and Automation Control Conference (ITNEC), IEEE 5; 413–418 [Google Scholar]
  190. Xun Y, Qin J and Liu J. Deep learning enhanced driving behavior evaluation based on vehicle-edge-cloud architecture. IEEE Trans Veh Technol 2021; 70: 6172–6177 [Google Scholar]
  191. Ma Xc, Lu J, Wong YD, et al. Exploring the behavior-driven crash risk prediction model: the role of onboard navigation data in road safety. J Adv Trans 2023; 2023 [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.