Issue
Security and Safety
Volume 3, 2024
Security and Safety in Physical Layer Systems
Article Number 2023019
Number of page(s) 14
Section Information Network
DOI https://doi.org/10.1051/sands/2023019
Published online 28 September 2023
  1. Number of IoT connected devices worldwide from 2019 to 2021, with forecasts from 2022 to 2030 (in billions). https://www.statista.com/statistics/1183457/iot-connected-devices-worldwide/ (17 March 2023, online; accessed), 2022. [Google Scholar]
  2. Liu P, Yang P and Song W-Z et al. Real-time identification of rogue WiFi connections using environment-independent physical features. In: IEEE INFOCOM 2019-IEEE Conference on Computer Communications. IEEE, Paris, France, Apr. 2019, 190–8. [CrossRef] [Google Scholar]
  3. Joo K, Choi W and Lee DH. Hold the door! Fingerprinting your car key to prevent keyless entry car theft. In: ProcNetw Distrib Syst Security Symposium (NDSS), Virtual Conference, Feb. 2020. [Google Scholar]
  4. Hua J, Sun H and Shen Z et al. Accurate and efficient wireless device fingerprinting using channel state information. In: IEEE INFOCOM 2018-IEEE Conference on Computer Communications. IEEE, Honolulu, HI, USA, Apr. 2018, 1700–8. [CrossRef] [Google Scholar]
  5. Shi Y and Jensen MA. Improved radiometric identification of wireless devices using MIMO transmission. IEEE TransInf Forensics Secur 2011; 6: 1346–54. [CrossRef] [Google Scholar]
  6. Polak AC and Goeckel DL. Wireless device identification based on RF oscillator imperfections. IEEE Trans Inf ForensicsSecur 2015; 10: 2492–501. [CrossRef] [Google Scholar]
  7. Peng L, Hu A and Zhang J et al. Design of a hybrid RF fingerprint extraction and device classification scheme. IEEE Internet Things J 2018; 6: 349–60. [Google Scholar]
  8. Brik V, Banerjee S and Gruteser M et al. Wireless device identification with radiometric signatures. In: MobiCom ‘08: Proceedings of the 14th ACM International Conference on Mobile Computing and Networking, San Francisco, CA, USA, Sep. 2008;1:116–27. [Google Scholar]
  9. Polak AC, Dolatshahi S and Goeckel DL. Identifying wireless users via transmitter imperfections. IEEE J Sel AreasCommun 2011; 29: 1469–79. [CrossRef] [Google Scholar]
  10. Li Y, Ding Y and Zhang J et al. Radio frequency fingerprinting exploiting non-linear memory effect. IEEE Trans Cogn Commun Netw 2022; 8: 1618–31. [CrossRef] [Google Scholar]
  11. Balakrishnan S, Gupta S and Bhuyan A et al. Physical layer identification based on spatial–temporal beam featuresfor millimeter-wave wireless networks. IEEE Trans Inf Forensics Secur 2019; 15: 1831–45. [Google Scholar]
  12. Wang N, Li W and Jiao L et al. Orientation and channel-independent RF fingerprinting for 5G IEEE 802. 11 ad devices. IEEE Internet Things J 2021; 9: 9036–48. [Google Scholar]
  13. Robyns P, Marin E and Lamotte W et al. Physical-layer fingerprinting of LoRa devices using supervised and zero-shotlearning. In: Proceedings of the 10th ACM Conference on Security and Privacy in Wireless and Mobile Networks, 2017; 1: 58–63. [CrossRef] [Google Scholar]
  14. Peng L, Zhang J and Liu M et al. Deep learning based RF fingerprint identification using differential constellationtrace figure. IEEE Trans Veh Technol 2019; 69: 1091–95. [Google Scholar]
  15. Al-Shawabka A, Restuccia F and D’Oro S et al. Exposing the fingerprint: dissecting the impact of the wireless channelon radio fingerprinting. In: IEEE INFOCOM 2020 – IEEE Conference on Computer Communications. IEEE, Toronto, ON, Canada, Jul. 2020, 646–55. [CrossRef] [Google Scholar]
  16. Shen G, Zhang J and Marshall A et al. Radio frequency fingerprint identification for LoRa using deep learning. IEEEJ Sel Areas Commun 2021; 39: 2604–16. [CrossRef] [Google Scholar]
  17. Zhang J, Woods R and Sandell M et al. Radio frequency fingerprint identification for narrowband systems, modelling and classification. IEEE Trans Inf Forensics Secur 2021; 16: 3974–87. [CrossRef] [Google Scholar]
  18. Shen G, Zhang J and Marshall A et al. Radio frequency fingerprint identification for LoRa using spectrogram and CNN. In: IEEE INFOCOM 2021-IEEE Conference on Computer Communications, Virtual Conference. IEEE, Vancouver, BC, Canada, 2021, 1–10. [Google Scholar]
  19. Shen G, Zhang J and Marshall A et al. Towards scalable and channel-robust radio frequency fingerprint identificationfor LoRa. IEEE Trans Inf Forensics Secur 2022; 17: 774–87. Dataset and code are available: https://ieee-dataport.org/open-access/lorar_dataset (29 January 2023, last accessed). [CrossRef] [Google Scholar]
  20. Roy D, Mukherjee T and Chatterjee M et al. RFAL: adversarial learning for RF transmitter identification andclassification. IEEE Trans Cogn Commun Netw 2019; 6: 783–801. [Google Scholar]
  21. Cekic M, Gopalakrishnan S and Madhow U. Wireless fingerprinting via deep learning: the impact of confounding factors. In: 2021 55th Asilomar Conference on Signals, Systems, and Computers. IEEE, Pacific Grove, CA, USA, 2021, 677–84. [CrossRef] [Google Scholar]
  22. Yu J, Hu A and Li G et al. A robust RF fingerprinting approach using multisampling convolutional neural network. IEEE Internet Things J 2019; 6: 6786–99. [CrossRef] [Google Scholar]
  23. Jian T, Gong Y and Zhan Z et al. Radio frequency fingerprinting on the edge. IEEE Trans. Mobile Comput 2021; 21: 4078–93. [Google Scholar]
  24. Soltani N, Sankhe K and Dy J et al. More is better: data augmentation for channel-resilient RF fingerprinting. IEEECommun Mag 2020; 58: 66–72. [CrossRef] [Google Scholar]
  25. Soltani N, Reus-Muns G and Salehihikouei B et al. RF fingerprinting unmanned aerial vehicles with non-standard transmitter waveforms. IEEE Trans Veh Technol 2020; 69: 15518–531. [CrossRef] [Google Scholar]
  26. Qian Y, Qi J and Kuai X et al. Specific emitter identification based on multi-level sparse representation in automatic identification system. IEEE Trans Inf Forensics Secur 2021; 16: 2872–84. [CrossRef] [Google Scholar]
  27. Al-Shawabka A, Pietraski P and Pattar SB et al. DeepLoRa: fingerprinting LoRa devices at scale through deep learn-ing and data augmentation. In: Proceedings of the Twenty-second International Symposium on Theory, Algorithmic Foundations, and Protocol Design for Mobile Networks and Mobile Computing, Jul. 2021;251–60. [CrossRef] [Google Scholar]
  28. Piva M, Maselli G and Restuccia F. The tags are alright: robust large-scale RFID clone detection through feder-ated data-augmented radio fingerprinting. In: Proceedings of the Twenty-second International Symposium on Theory, Algorithmic Foundations, and Protocol Design for Mobile Networks and Mobile Computing, Jul. 2021, 41–50. [CrossRef] [Google Scholar]
  29. Merchant K, Revay S and Stantchev G et al. Deep learning for RF device fingerprinting in cognitive communication networks. IEEE J Sel Topics Signal Process 2018; 12: 160–7. [CrossRef] [Google Scholar]
  30. Elmaghbub A and Hamdaoui B. LoRa device fingerprinting in the wild: disclosing RF data-driven fingerprint sensitivity to deployment variability. IEEE Access 2021; 9: 142893–909. [CrossRef] [Google Scholar]
  31. Hanna S, Karunaratne S and Cabric D. WiSig: a large-scale WiFi signal dataset for receiver and channel agnostic RF fingerprinting. IEEE Access 2022; 10: 22808–18. [CrossRef] [Google Scholar]
  32. Xie R, Xu W and Chen Y et al. A generalizable model-and-data driven approach for open-set RFF authentication. IEEE Trans Inf Forensics Secur 2021; 16: 4435–50. [CrossRef] [Google Scholar]
  33. Rajendran S and Sun Z. RF impairment model-based IoT physical-layer identification for enhanced domain generalization. IEEE Trans Inf Forensics Secur 2022; 17: 1285–99. [CrossRef] [Google Scholar]
  34. Ding L, Wang S and Wang F et al. Specific emitter identification via convolutional neural networks. IEEE Commun Lett 2018; 22: 2591–4. [CrossRef] [Google Scholar]
  35. Das R, Gadre A and Zhang SA et al. A deep learning approach to IoT authentication. In: 2018 IEEE international conference on communications (ICC). IEEE, Kansas City, MO, USA, 2018, 1–6. [Google Scholar]
  36. He B and Wang F. Cooperative specific emitter identification via multiple distorted receivers. IEEE Trans Inf Forensics Secur. 2020; 15: 3791–3806. [CrossRef] [Google Scholar]
  37. Shen G, Zhang J and Marshall A et al. Radio frequency fingerprint identification for security in low-cost IoT devices. In: 2021 55th Asilomar Conference on Signals, Systems, and Computers. IEEE, Pacific Grove, CA, USA, 2021, 309–13. [CrossRef] [Google Scholar]
  38. Xu Y, Liu M and Peng L et al. Colluding RF fingerprint impersonation attack based on generative adversarial network. In: ICC 2022-IEEE International Conference on Communications. IEEE, Seoul, Republic of Korea, 2022, 3220–25. [CrossRef] [Google Scholar]
  39. Merchant K and Nousain B. Securing IoT RF fingerprinting systems with generative adversarial networks. In: MILCOM2019-2019 IEEE Military Communications Conference. IEEE, Norfolk, VA, USA, 2019, 584–9. [Google Scholar]
  40. Chen Z, Peng L and Hu A et al. Generative adversarial network-based rogue device identification using differential constellation trace figure. EURASIP J Wireless Commun Netw. 2021; 2021: 1–27. [CrossRef] [Google Scholar]
  41. Xu H and Xu X. A transformer based approach for open set specific emitter identification. In: 2021 7th International Conference on Computer and Communications (ICCC). IEEE, Chengdu, China, 2021, 1420–5. [CrossRef] [Google Scholar]
  42. Shen G, Zhang J and Marshall A et al. Towards length-versatile and noise-robust radio frequency fingerprint identification. IEEE Trans Inf Forensics Secur 2023; 18: 2355–67. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.