Open Access
Issue
Security and Safety
Volume 2, 2023
Article Number 2023023
Number of page(s) 24
Section Other Fields
DOI https://doi.org/10.1051/sands/2023023
Published online 05 September 2023
  1. AV-TEST. Malware Statistics & Trends Report. https://www.av-test.org/en/statistics/malware/ (January 2023). [Google Scholar]
  2. Moser A, Kruegel C and Kirda E, Limits of static analysis for malware detection. In: The 23rd Annual Computer Security Applications Conference (ACSAC 2007), December 10–14, 2007, Miami Beach, FL, USA, 2007, 421–430, doi: 10.1109/ACSAC.2007.21. [Google Scholar]
  3. Aghakhani H, Gritti F and Mecca F et al. When malware is packin’heat; limits of machine learning classifiers based on static analysis features. In: Network and Distributed Systems Security (NDSS) Symposium 2020. 2020, doi: 10.14722/ndss.2020.24310. [Google Scholar]
  4. Ji T, Fang B and Cui X et al. Framework for understanding intention-unbreakable malware. Sci Chin Inf Sci 2023; 66: 142104. [CrossRef] [Google Scholar]
  5. Chen X, Andersen J and Mao ZM et al. Towards an understanding of anti-virtualization and anti-debugging behavior in modern malware. In: The 38th Annual IEEE/IFIP International Conference on Dependable Systems and Networks, DSN 2008, June 24–27, 2008, Anchorage, Alaska, USA. IEEE Computer Society, 2008, 177–86. [Google Scholar]
  6. Polino M, Continella A and Mariani S et al. Measuring and defeating anti-instrumentation-equipped malware. In: Polychronakis M and Meier M (eds.). Detection of Intrusions and Malware, and Vulnerability Assessment. DIMVA 2017. Lecture Notes in Computer Science. Vol. 10327. Cham: Springer, 2017. [Google Scholar]
  7. D’Elia DC, Coppa E and Nicchi S et al. SoK: using dynamic binary instrumentation for security (and how you may get caught red handed). In: Proceedings of the 2019 ACM Asia Conference on Computer and Communications Security. ACM, 2019;15–27. [Google Scholar]
  8. D’Elia DC, Coppa E and Palmaro F et al. On the dissection of evasive malware. IEEE Trans Inf Forensics Secur 2020; 15: 2750–65. [CrossRef] [Google Scholar]
  9. Galloro N, Polino M and Carminati M et al. A systematical and longitudinal study of evasive behaviors in windows malware. Comput Secur 2022; 113: 102550. [CrossRef] [Google Scholar]
  10. Afianian A, Niksefat S and Sadeghiyan B et al. Malware dynamic analysis evasion techniques: a survey. ACM Comput Surv 2019; 52: 1–28. [Google Scholar]
  11. Moser A, Kruegel C and Kirda E, Exploring multiple execution paths for malware analysis. In: 2007 IEEE Symposium on Security and Privacy (SP’07). IEEE, 2007. [Google Scholar]
  12. Peng F, Deng Z and Zhang X et al. X-force: force-executing binary programs for security applications. In: 23rd USENIX Security Symposium (USENIX Security 14), San Diego, CA. 2014. [Google Scholar]
  13. You W, Zhang Z and Kwon Y et al., Pmp: cost-effective forced execution with probabilistic memory pre-planning. In: 2020 IEEE Symposium on Security and Privacy (SP). IEEE, 2020, 1121–38. [CrossRef] [Google Scholar]
  14. Intel. Pin – A Dynamic Binary Instrumentation Tool. www.intel.com/content/www/us/en/developer/articles/tool/pin-a-dynamic-binary-instrumentation-tool.html (January 2023). [Google Scholar]
  15. Branco RR, Barbosa GN and Neto PD. Scientific but not academical overview of malware anti-debugging, antidisassembly and anti-vm technologies. Black Hat 2012; 1: 1–27. [Google Scholar]
  16. Chenke L, Feng Y and Qiyuan G et al. Anti-reverse-engineering tool of executable files on the windows platform. In: 2017 IEEE International Conference on Computational Science and Engineering (CSE) and IEEE International Conference on Embedded and Ubiquitous Computing (EUC). Vol. 1. IEEE, 2017, 797–800. [Google Scholar]
  17. Cha SK, Avgerinos T and Rebert A et al. Unleashing mayhem on binary code. In: 2012 IEEE Symposium on Security and Privacy. IEEE, 2012, 380–94. [Google Scholar]
  18. Chipounov V, Kuznetsov V and Candea G. S2E: a platform for in-vivo multi-path analysis of software systems. Acm Sigplan Notices 2011; 46: 265–78. [CrossRef] [Google Scholar]
  19. Saudel F and Salwan J, Triton: a dynamic symbolic execution framework. In: Symposium sur la sécurité des technologies de l’information et des communications, SSTIC. France, Rennes. 2015, 31–54. [Google Scholar]
  20. Shoshitaishvili Y, Wang R and Salls C et al., Sok: (state of) the art of war: offensive techniques in binary analysis. In: 2016 IEEE Symposium on Security and Privacy (SP). IEEE, 2016, 138–57. [CrossRef] [Google Scholar]
  21. Böohme M, Pham VT and Roychoudhury A, Coverage-based greybox fuzzing as markov chain. In: Proceedings of the 2016 ACM SIGSAC Conference on Computer and Communications Security. ACM, 2016;1032–43. [CrossRef] [Google Scholar]
  22. Zhao L, Duan Y and Yin H et al. Send hardest problems my way: probabilistic path prioritization for hybrid fuzzing. In: Network and Distributed Systems Security (NDSS) Symposium 2019. 2019, doi: 10.14722/ndss.2019.23504. [Google Scholar]
  23. Sebastio S, Baranov E and Biondi F, et al. Optimizing symbolic execution for malware behavior classification. Comput Secur 2020;93: 101775. [CrossRef] [Google Scholar]
  24. Wang X, Yang Y and Zhu S. Automated hybrid analysis of android malware through augmenting fuzzing with forced execution. IEEE Trans Mobile Comput 2019; 18: 2768–82. [CrossRef] [Google Scholar]
  25. Park K, Sahin B and Chen Y et al. Identifying behavior dispatchers for malware analysis. In: Proceedings of the 2021 ACM Asia Conference on Computer and Communications Security. ACM, 2021;759–73. [CrossRef] [Google Scholar]
  26. Wang Y, Jia X and Liu Y et al. Not all coverage measurements are equal: fuzzing by coverage accounting for input prioritization. In: 27th Annual Network and Distributed System Security Symposium, NDSS 2020, San Diego, California, USA, February 23–26, 2020. The Internet Society, 2020. [Google Scholar]
  27. Xu Z, Zhang J and Gu G et al. Autovac: automatically extracting system resource constraints and generating vaccines for malware immunization. In: 2013 IEEE 33rd International Conference on Distributed Computing Systems. IEEE, 2013, 112–23. [Google Scholar]
  28. Schwartz EJ, Avgerinos T and Brumley D. All you ever wanted to know about dynamic taint analysis and forward symbolic execution (but might have been afraid to ask). In: 2010 IEEE Symposium on Security and Privacy. IEEE, 2010, 2010, 317–31. [CrossRef] [Google Scholar]
  29. Maffia L, Nisi D and Kotzias P et al. Longitudinal study of the prevalence of malware evasive techniques. CoRR. Preprint arXiv:2112.11289 (2021). [Google Scholar]
  30. Kemerlis VP, Portokalidis G and Jee K et al. Libdft: practical dynamic data flow tracking for commodity systems. In: Proceedings of the 8th ACM SIGPLAN/SIGOPS Conference on Virtual Execution Environments. ACM, 2012, 121–32. [CrossRef] [Google Scholar]
  31. Dorigo M and Gambardella LM, Ant colony system: a cooperative learning approach to the traveling salesman problem. IEEE Trans Evol Comput 1997; 1: 53–66. [CrossRef] [Google Scholar]
  32. Goldberg DE, Genetic Algorithms in Search, Optimization, and Machine Learning. Reading, MA: Addison Wesley, 1989. [Google Scholar]
  33. Küchler A, Mantovani A and Han Y et al. Does every second count? Time-based evolution of malware behavior in sandboxes. In:Proceedings 2021 Network and Distributed System Security Symposium. 2021. [Google Scholar]
  34. Landry J. Malware Discovered – SFG: Furtim Malware Analysis. https://www.sentinelone.com/blog/sfg-furtims-parent/ (January 2016). [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.